Skip to main content

Advertisement

Log in

Betaine: A Promising Micronutrient in Diet Intervention for Ameliorating Maternal Blood Biochemical Alterations in Gestational Diabetes Mellitus

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Gestational diabetes mellitus (GDM) exact pathophysiology remain elusive to date, nevertheless most of the studies are compatible with this fact that triggered β-cells dysfunction is the main cause of hyperglycemia in a background of a physiologically increased insulin resistance (IR). We examined betaine effects as a micronutrient on GDM by evaluation of insulin, homocysteine, HbA1c % concentrations and lipids profile in a animal model of rats. 32 pregnant rats divided into four equal groups: Control (C), Betaine (Bet. 1.5% w/w of diet), Gestational diabetes (GD) and gestational diabetes treated with betaine (GD + Bet.). GDM established by a single intraperitoneal injection of streptozotocin (65 mg/kg BW). Fasting blood sugar (FBS) and body weight (BW) screened during pregnancy. We also measured insulin, total homocysteine (tHcy), HbA1c%, glucose, total cholesterol (TC), triglycerides, Low density lipoprotein (LDL), and high density lipoprotein concentrations, postpartum. Betaine supplementation decreased FBS and recovered BW loss in GD + Bet. compared to GD group during pregnancy. Also, it increased insulin levels, restored tHcy normal concentration, improved insulin resistance (IR) and lipids profile characterized by decreased HbA1c%, FBS, TC, LDL concentrations and increased HDL level. Diet interventions suggested to be a good approach for alleviating maternal metabolic alterations in GDM. Current paper highlighted betaine beneficial effects on GDM via increasing insulin level, improving IR and regulation of Methionine-Homocysteine cycle. Thereby, we created a paradigm for future studies of betaine role as a micronutrient in GDM prevention and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abell S, De Courten B, Boyle J, Teede HJ (2015) Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int J Mol Sci 16(6):13442–13473

    Article  CAS  Google Scholar 

  • Alirezaei M (2015) Betaine protects cerebellum from oxidative stress following levodopa and benserazide administration in rats. Iran J Basic Med Sci 18(10):950–957

    PubMed  PubMed Central  Google Scholar 

  • Alirezaei M, Khoshdel Z, Dezfoulian O, Rashidipour M, Taghadosi V (2015) Beneficial antioxidant properties of betaine against oxidative stress mediated by levodopa/benserazide in the brain of rats. J Physiol Sci 65(3):243–252

    Article  CAS  Google Scholar 

  • Alirezaei M, Kheradmand A, Salahi P, Azizi A (2018) Olive leaves extract effects on sperm quality following experimentally-induced diabetes in rats. Iran J Vet Med 12(4):335–346

    Google Scholar 

  • Aziz A, Hajar S, John CM, Yusof M, Saidaah NI, Nordin M, Ramasamy R et al (2016) Animal model of gestational diabetes mellitus with pathophysiological resemblance to the human condition induced by multiple factors (nutritional, pharmacological, and stress) in rats. Biomed Res Int. https://doi.org/10.1155/2016/9704607

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai D, Yuan M, Liu H, Pan S, Ma W, Hong J, Zhao R (2016) Maternal betaine supplementation throughout gestation and lactation modifies hepatic cholesterol metabolic genes in weaning piglets via AMPK/LXR-mediated pathway and histone modification. Nutrients 8(10):646

    Article  Google Scholar 

  • Cai D, Liu H, Hu Y, Jiang Y, Zhao R (2017) Gestational betaine, liver metabolism, and epigenetics. In: Patel V, Preedy V (eds) Handbook of nutrition, diet, and epigenetics. Springer, Basel, pp 1–14

    Google Scholar 

  • Chen Q, Francis E, Hu G, Chen L (2018) Metabolomic profiling of women with gestational diabetes mellitus and their offspring: review of metabolomics studies. J Diabetes Complic 32(5):512–523

    Article  Google Scholar 

  • Chiefari E, Arcidiacono B, Foti D, Brunetti A (2017) Gestational diabetes mellitus: an updated overview. J Endocrinol Invest 40(9):899–909

    Article  CAS  Google Scholar 

  • Choi YJ, Na JD, Jun DS, Kim YC (2018) Protective effect of betaine against galactosamine-induced acute liver injury in rats. J Funct Foods 44:65–73

    Article  CAS  Google Scholar 

  • Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, Damm P (2008) High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care 31(2):340–346

    Article  Google Scholar 

  • Du J, Shen L, Tan Z, Zhang P, Zhao X, Xu Y, Yang Q, Ma J et al (2018) Betaine supplementation enhances lipid metabolism and improves insulin resistance in mice fed a high-fat diet. Nutrients 10(2):131

    Article  Google Scholar 

  • Ejaz A, Martinez-Guino L, Goldfine AB, Ribas-Aulinas F, De Nigris V, Ribó S, Gonzalez-Franquesa A, Garcia-Roves PM et al (2016) Dietary betaine supplementation increases Fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice. Diabetes 65:902–912

    Article  CAS  Google Scholar 

  • Federico C, Pridjian G (2018) An overview of gestational diabetes. In: Bagchi D, Nair S (eds) Nutritional and therapeutic interventions for diabetes and metabolic syndrome, 2nd edn. Elsevier, Amsterdam, pp 155–168

    Chapter  Google Scholar 

  • Gong T, Wang J, Yang M, Shao Y, Liu J, Wu Q, Xu Q, Wang H et al (2016) Serum homocysteine level and gestational diabetes mellitus: a meta-analysis. J Diabetes Investig 7(4):622–628

    Article  CAS  Google Scholar 

  • Grizales AM, Patti M-E, Lin AP, Beckman JA, Sahni VA, Cloutier E, Fowler KM, Dreyfuss JM et al (2018) Metabolic effects of betaine: a randomized clinical trial of betaine supplementation in prediabetes. J Clin Endocrinol Metab 103(8):3038–3049

    Article  Google Scholar 

  • Heidari R, Niknahad H, Sadeghi A, Mohammadi H, Ghanbarinejad V, Ommati MM, Hosseini A, Azarpira N et al (2018) Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed Pharmacother 103:75–86

    Article  CAS  Google Scholar 

  • Jack-Roberts C, Joselit Y, Nanobashvili K, Bretter R, Malysheva OV, Caudill MA, Saxena A, Axen K et al (2017) Choline supplementation normalizes fetal adiposity and reduces lipogenic gene expression in a mouse model of maternal obesity. Nutrients 9(8):899

    Article  Google Scholar 

  • Jawerbaum A, White VJER (2010) Animal models in diabetes and pregnancy. Endocr Rev 31(5):680–701

    Article  Google Scholar 

  • Joselit Y, Nanobashvili K, Jack-Roberts C, Greenwald E, Malysheva OV, Caudill MA, Saxena A et al (2018) Maternal betaine supplementation affects fetal growth and lipid metabolism of high-fat fed mice in a temporal-specific manner. Nutr Diabetes 8(1):41

    Article  Google Scholar 

  • Kathirvel E, Morgan K, Nandgiri G, Sandoval BC, Caudill MA, Bottiglieri T, French SW, Morgan TR (2010) Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am J Physiol Gastrointest Liver Physiol 299(5):1068–1077

    Article  Google Scholar 

  • Kim DH, Kim SM, Lee B, Lee EK, Chung KW, Moon KM, An HJ, Kim KM et al (2017) Effect of betaine on hepatic insulin resistance through FOXO1-induced NLRP3 inflammasome. J Nutr Biochem 45:104–114

    Article  CAS  Google Scholar 

  • Lever M, Slow S, McGregor DO, Dellow WJ, George PM, Chambers ST (2012) Variability of plasma and urine betaine in diabetes mellitus and its relationship to methionine load test responses: an observational study. Cardiovasc Diabetol 11(1):34

    Article  CAS  Google Scholar 

  • Nanobashvili K, Jack-Roberts C, Bretter R, Jones N, Axen K, Saxena A, Blain K, Jiang XJN (2018) Maternal choline and betaine supplementation modifies the placental response to hyperglycemia in mice and human trophoblasts. Nutrients 10(10):1507

    Article  Google Scholar 

  • Nieman KM, Hartz CS, Szegedi SS, Garrow TA, Sparks JD, Schalinske KL (2006) Folate status modulates the induction of hepatic glycine N-methyltransferase and homocysteine metabolism in diabetic rats. Am J Physiol Endocrinol Metab 291(6):1235–1242

    Article  Google Scholar 

  • Plows J, Stanley J, Baker P, Reynolds C, Vickers M (2018) The pathophysiology of gestational diabetes mellitus. Int J Mol Sci 19(11):3342

    Article  Google Scholar 

  • Ratnam S, Wijekoon EP, Hall B, Garrow TA, Brosnan ME, Brosnan JT (2006) Effects of diabetes and insulin on betaine-homocysteine S-methyltransferase expression in rat liver. Am J Physiol Endocrinol Metab 290(5):933–939

    Article  Google Scholar 

  • Ross AB, Bruce SJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Bourgeois A, Nielsen-Moennoz C, Vigo M et al (2011) A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects. Br J Nutr 105(10):1492–1502

    Article  CAS  Google Scholar 

  • Saha S, Schwarz P (2017) Impact of glycated hemoglobin (HbA1c) on identifying insulin resistance among apparently healthy individuals. J Public Health 25(5):505–512

    Article  Google Scholar 

  • Schwab U, Alfthan G, Aro A, Uusitupa M (2011) Long-term effect of betaine on risk factors associated with the metabolic syndrome in healthy subjects. Eur J Clin Nutr 65(1):70–76

    Article  CAS  Google Scholar 

  • Sivanesan S, Taylor A, Zhang J, Bakovic M (2018) Betaine and choline improve lipid homeostasis in obesity by participation in mitochondrial oxidative demethylation. Front Nutr 5:61

    Article  Google Scholar 

  • Wijekoon E, Brosnan M, Brosnan J (2007) Homocysteine metabolism in diabetes. Biochem Soc Trans 35(5):1175–1179

    Article  CAS  Google Scholar 

  • Wu L, Parhofer KG (2014) Diabetic dyslipidemia. Metabolism 63(12):1469–1479

    Article  CAS  Google Scholar 

  • Zhang M, Zhang H, Li H, Lai F, Li X, Tang Y, Min T, Wu H (2016) Antioxidant mechanism of betaine without free radical scavenging ability. J Agric Food Chem 64(42):7921–7930

    Article  CAS  Google Scholar 

  • Zhao G, He F, Wu C, Li P, Li N, Deng J, Zhu G, Ren W, Peng YJ (2018) Betaine in inflammation: mechanistic aspects and applications. Front Immunol 9:1070

    Article  Google Scholar 

Download references

Acknowledgements

This work financially supported by research council of Lorestan University. We are most grateful to Miss. Chahari and Zeynivand for their kindly cooperation in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pouya Salahi or Masoud Alirezaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All rats were treated humanely and in compliance with the recommendations of Animal Care Committee for the Lorestan University (Khorramabad, Iran) with approval number: LU.ECRA. 2017.4.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahi, P., Alirezaei, M., Kheradmand, A. et al. Betaine: A Promising Micronutrient in Diet Intervention for Ameliorating Maternal Blood Biochemical Alterations in Gestational Diabetes Mellitus. Int J Pept Res Ther 26, 1177–1184 (2020). https://doi.org/10.1007/s10989-019-09922-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09922-3

Keywords

Navigation