Skip to main content

Advertisement

Log in

The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The ubiquitin C-terminal hydrolase (UCH) is a subfamily of deubiquitinating enzymes, which consists of four members: UCH-L1, UCH-L3, UCH37, and BRCA1-associated protein-1. Although there is growing evidence that UCH enzymes and human malignancies are closely correlated, there have been few studies on UCH37, especially on its interactions with other proteins. In the current study, a functional proteomic analysis was performed to screen UCH37-interacting proteins in hepatocellular carcinoma (HCC), and glucose-regulated protein 78 was identified as one interacting with UCH37, which was confirmed by co-immunoprecipitation and confocal laser scanning microscopy analysis, suggesting that their interaction could provide a new insight into the mechanism of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

co-IP:

Co-immunoprecipitation

DUBs:

Deubiquitinating enzymes

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

GRP78:

Glucose-regulated protein 78

HCC:

Hepatocellular carcinoma

hINO80:

Human Ino80 chromatin-remodeling complex

HSPs:

Heat shock proteins

IPTG:

Isopropyl β-d-thiogalactoside

PBS:

Phosphate-buffered saline

SD:

Standard deviation

Ub:

Ubiquitin

UCH:

Ubiquitin C-terminal hydrolase

References

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  2. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  3. Finley D, Ciechanover A, Varshavsky A (2004) Ubiquitin as a central cellular regulator. Cell 116(Suppl 2):S29–S32 (2p following S32)

    Article  PubMed  CAS  Google Scholar 

  4. Sridhar VV et al (2007) Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 477(7145):735–738

    Article  Google Scholar 

  5. Liu H et al (2009) Regulation of ErbB2 receptor status by the proteasomal DUB POH1. PLoS One 4(5):e5544

    Article  PubMed  Google Scholar 

  6. Singhal S, Taylor MC, Baker RT (2008) Deubiquitylating enzymes and disease. BMC Biochem 9(Suppl 1):S3

    Article  PubMed  Google Scholar 

  7. Larsen CN, Krantz BA, Wilkinson KD (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37(10):3358–3368

    Article  PubMed  CAS  Google Scholar 

  8. Yao T et al (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 8(9):994–1002

    Article  PubMed  CAS  Google Scholar 

  9. Schreiner P et al (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453(7194):548–552

    Article  PubMed  CAS  Google Scholar 

  10. Husnjak K et al (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453(7194):481–488

    Article  PubMed  CAS  Google Scholar 

  11. Yao T et al (2008) Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell 31(6):909–917

    Article  PubMed  CAS  Google Scholar 

  12. Zediak VP, Berger SL (2008) Hit and run: transient deubiquitylase activity in a chromatin-remodeling complex. Mol Cell 31(6):773–774

    Article  PubMed  CAS  Google Scholar 

  13. Wicks SJ et al (2005) The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-β signaling. Oncogene 24(54):8080–8084

    Article  PubMed  CAS  Google Scholar 

  14. Wicks SJ et al (2006) Reversible ubiquitination regulates the Smad/TGF-β signalling pathway. Biochem Soc Trans 34(Pt 5):761–763

    PubMed  CAS  Google Scholar 

  15. Mazumdar T et al (2010) Regulation of NF-κB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc Natl Acad Sci USA 107(31):13854–13859

    Article  PubMed  CAS  Google Scholar 

  16. Fang Y, Fu D, Shen XZ (2010) The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta 1806(1):1–6

    PubMed  CAS  Google Scholar 

  17. Nishio K et al (2009) Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem Biophys Res Commun 390(3):855–860

    Article  PubMed  CAS  Google Scholar 

  18. Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695(1–3):189–207

    Article  PubMed  CAS  Google Scholar 

  19. Soboleva TA, Baker RT (2004) Deubiquitinating enzymes: their functions and substrate specificity. Curr Protein Pept Sci 5(3):191–200

    Article  PubMed  CAS  Google Scholar 

  20. Nijman SM et al (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5):773–786

    Article  PubMed  CAS  Google Scholar 

  21. Wang M et al (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 11(9):2307–2316

    Article  PubMed  CAS  Google Scholar 

  22. Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cell Biochem 110(6):1299–1305

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez-Gronow M et al (2009) GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal 11(9):2299–2306

    Article  PubMed  CAS  Google Scholar 

  24. Dong D et al (2004) Spontaneous and controllable activation of suicide gene expression driven by the stress-inducible grp78 promoter resulting in eradication of sizable human tumors. Hum Gene Ther 15(6):553–561

    Article  PubMed  CAS  Google Scholar 

  25. Lee AS (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67(8):3496–3499

    Article  PubMed  CAS  Google Scholar 

  26. Dai RY et al (2009) p28GANK inhibits endoplasmic reticulum stress-induced cell death via enhancement of the endoplasmic reticulum adaptive capacity. Cell Res 19(11):1243–1257

    Article  PubMed  CAS  Google Scholar 

  27. Luk JM et al (2006) Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6(3):1049–1057

    Article  PubMed  CAS  Google Scholar 

  28. Jamora C, Dennert G, Lee AS (1996) Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA 93(15):7690–7694

    Article  PubMed  CAS  Google Scholar 

  29. Xing X et al (2006) Overexpression of glucose-regulated protein 78 in colon cancer. Clin Chim Acta 364(1–2):308–315

    Article  PubMed  CAS  Google Scholar 

  30. Wang Q et al (2005) Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. Cancer Detect Prev 29(6):544–551

    Article  PubMed  CAS  Google Scholar 

  31. Zhang J et al (2006) Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clin Exp Metastasis 23(7–8):401–410

    PubMed  Google Scholar 

  32. Misra UK, Deedwania R, Pizzo SV (2006) Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281(19):13694–13707

    Article  PubMed  CAS  Google Scholar 

  33. Park HR et al (2007) Glucose-deprived HT-29 human colon carcinoma cells are sensitive to verrucosidin as a GRP78 down-regulator. Toxicology 229(3):253–261

    Article  PubMed  CAS  Google Scholar 

  34. Chiou JF et al (2010) Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma. Ann Surg Oncol 17(2):603–612

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of Prof. Xizhong Shen’s laboratory for their helpful discussion and critical reading of the manuscript, and the members of the Key Laboratory of Molecular Medicine (under the auspice of the Ministry of Education), Shanghai Medical School of Fudan University for their technical assistance, and Institutes of Biomedical Sciences, Fudan University for their confocal laser scanning microscopy. The study was partly funded by National Basic Research Program of China (2007CB936000), Major National Science and Technology Projects (2009ZX10004-301, 2008ZX10002-017), Shanghai Science and Technology Commission (10410709400, 10411950100), Shanghai Talent Development Fund (2009-035), National Nature Science Foundation of China (30872503, 81000968), China Postdoctoral Science Foundation Funded Project (20100480542), Innovation Foundation for Graduates of Fudan University (EYE152048) ,and the National Clinical Key Special Subject of China.

Conflict of interest

The authors have no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Fu or Xizhong Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 69 kb)

Supplementary material 2 (DOC 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Y., Mu, J., Ma, Y. et al. The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Mol Cell Biochem 359, 59–66 (2012). https://doi.org/10.1007/s11010-011-0999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0999-7

Keywords

Navigation