Skip to main content
Log in

The effects of endoplasmic reticulum stress response on duck decorin stimulate myotube hypertrophy in myoblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Decorin inhibits the transforming growth factor superfamily to stimulate skeletal muscle hypertrophy. The endoplasmic reticulum (ER) plays a crucial role in the synthesis and folding of proteins. The disruption of ER homeostasis affects protein folding and causes ER stress, which is associated with protein synthesis in muscle cells. The purpose of this study was to establish the mechanism by which decorin promotes myoblast proliferation and myotube hypertrophy as mediated by an ER stress-related pathway. Duck myoblasts were incubated for 24 h with tunicamycin. Our results show that tunicamycin triggered ER stress in myoblasts and led to an increase in protein synthesis via a decorin-dependent pathway. We then transfected the decorin gene into duck myoblasts in vitro, and the results demonstrated that overexpression of duck decorin increased myogenic determination factor and follistatin expression and decreased myogenin and myostatin expression. Moreover, the results demonstrated that overexpression of duck decorin led to higher expression of ER stress marker genes. This increased expression trend can be alleviated in vitro by 4-PBA, which is a chemical chaperone that inhibits palmitate-induced ER stress. Collectively, our data show that duck decorin promotes myoblast proliferation mediated by an ER stress-related pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER (2010) Regulation of muscle mass by follistatin and activins. Mol Endocrinol 24(10):1998–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kollias HD, McDermott JC (2008) Transforming growth factor-β and myostatin signaling in skeletal muscle. J Appl Physiol 104(3):579–587

    Article  CAS  PubMed  Google Scholar 

  3. Yamaguchi Y, Mann DM, Ruoslahti E (1990) Negative regulation of transforming growth factor-β by the proteoglycan decorin. Nature 346(6281):281–284

    Article  CAS  PubMed  Google Scholar 

  4. Nicholas G, Thomas M, Langley B, Somers W, Patel K, Kemp CF, Sharma M, Kambadur R (2002) Titin-cap associates with, and regulates secretion of, Myostatin. J Cell Physiol 193(1):120–131

    Article  CAS  PubMed  Google Scholar 

  5. Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, Patel K (2004) Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol 270(1):19–30

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, Foster W, Xiao X, Huard J (2007) Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther 15(9):1616–1622

    Article  CAS  PubMed  Google Scholar 

  7. Deldicque L, Cani PD, Philp A, Raymackers JM, Meakin PJ, Ashford MLJ, Delzenne NM, Francaux M, Baar K (2010) The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am J Physiol Endocr Metab 299(5):E695–E705

    Article  CAS  Google Scholar 

  8. Hendershot LM, Valentine VA, Lee AS, Morris SW, Shapiro DN (1994) Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics 20(2):281–284

    Article  CAS  PubMed  Google Scholar 

  9. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  10. Nakanishi K, Sudo T, Morishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. Sci Signal 169(4):555–560

    CAS  Google Scholar 

  11. Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29(1):42–61

    Article  CAS  PubMed  Google Scholar 

  12. Deldicque L, Bertrand L, Patton A, Francaux M, Baar K (2011) ER stress induces anabolic resistance in muscle cells through PKB-induced blockade of mTORC1. PLoS ONE 6(6):e20993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reed S, Senf S, Cornwell E, Kandarian S, Judge A (2011) Inhibition of IkappaB kinase alpha (IKKα) or IKKbeta (IKKβ) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy. Biochem Biophys Res Commun 405(3):491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Novosyadlyy R, Kurshan N, Lann D, Vijayakumar A, Yakar S, LeRoith D (2008) Insulin-like growth factor-I protects cells from ER stress-induced apoptosis via enhancement of the adaptive capacity of endoplasmic reticulum. Cell Death Differ 15(8):1304–1317

    Article  CAS  PubMed  Google Scholar 

  15. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102(6):2389–2397

    Article  CAS  PubMed  Google Scholar 

  16. Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125(6):1275–1287

    Article  CAS  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT. Method Methods 25(4):402–408

    Google Scholar 

  18. Scheuner D, Kaufman RJ (2008) The unfolded protein response: a pathway that links insulin demand with β-cell failure and diabetes. Endocr Rev 29(3):317–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sundar Rajan S, Srinivasan V, Balasubramanyam M, Tatu U (2007) Endoplasmic reticulum (ER) stress & diabetes. Indian J Med Res 125(3):411–424

    CAS  PubMed  Google Scholar 

  20. Flamment M, Kammoun HL, Hainault I, Ferré P, Foufelle F (2010) Endoplasmic reticulum stress: a new actor in the development of hepatic steatosis. Curr Opin Lipidol 21(3):239–246

    Article  CAS  PubMed  Google Scholar 

  21. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci 94(23):12457–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee SJ (2007) Sprinting without myostatin: a genetic determinant of athletic prowess. Trends Genet 23(10):475–477

    Article  CAS  PubMed  Google Scholar 

  23. Gilson H, Schakman O, Kalista S, Lause P, Tsuchida K, Thissen JP (2009) Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am J Physiol-Endocr Metab 297(1):E157–E164

    Article  CAS  Google Scholar 

  24. Lai E, Teodoro T, Volchuk A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 22(3):193–201

    Article  CAS  PubMed  Google Scholar 

  25. Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes a review. Diabetes 51(suppl 3):S455–S461

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe Y, Suzuki O, Haruyama T, Akaike T (2003) Interferon-γ induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis. J Cell Biochem 89(2):244–253

    Article  CAS  PubMed  Google Scholar 

  27. Ozcan U, Ozcan L, Yilmaz E, Düvel K, Sahin M, Manning BD, Hotamisligil GS (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29(5):541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hage Hassan R, Hainault I, Vilquin JT, Samama C, Lasnier F, Ferré P, Foufelle F, Hajduch E (2011) Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells. Diabetologia 1–11

  29. Olguin HC, Santander C, Brandan E (2003) Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Dev Biol 259(2):209–224

    Article  CAS  PubMed  Google Scholar 

  30. Wyszyńska-Koko J, Pierzchała M, Flisikowski K, Kamyczek M, Różycki M, Kurył J (2006) Polymorphisms in coding and regulatory regions of the porcineMYF6 andMYOG genes and expression of theMYF6 gene inm. longissimus dorsi versus productive traits in pigs. J Appl Genet 47(2):131–138

    Article  PubMed  Google Scholar 

  31. Santra M, Reed CC, Iozzo RV (2002) Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping but distinct from the EGF-binding epitope. J Biol Chem 277(38):35671–35681

    Article  CAS  PubMed  Google Scholar 

  32. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98(16):9306–9311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kishioka Y, Thomas M, Wakamatsu J, Hattori A, Sharma M, Kambadur R, Nishimura T (2008) Decorin enhances the proliferation and differentiation of myogenic cells through suppressing myostatin activity. J Cell Physiol 215(3):856–867

    Article  CAS  PubMed  Google Scholar 

  34. Lee SJ (2007) Quadrupling muscle mass in mice by targeting TGF-ß signaling pathways. PLoS ONE 2(8):e789

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gregor MF, Hotamisligil GS (2007) Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48(9):1905–1914

    Article  CAS  PubMed  Google Scholar 

  36. Appenzeller-Herzog C, Hall MN (2012) Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22(5):274–282

    Article  CAS  PubMed  Google Scholar 

  37. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferré P, Foufelle F (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119(5):1201–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (No. 2010AA10A109), the National Waterfowl Industrial Technology System (No. CARS-43-6), and the Program for Technology Innovative Research Team of Sichuan Province of China (2011JTD0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwen Wang.

Additional information

Lingli Sun and Kai Lu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Lu, K., Liu, H. et al. The effects of endoplasmic reticulum stress response on duck decorin stimulate myotube hypertrophy in myoblasts. Mol Cell Biochem 377, 151–161 (2013). https://doi.org/10.1007/s11010-013-1581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1581-2

Keywords

Navigation