Skip to main content
Log in

The vacuolar ATPase in bone cells: a potential therapeutic target in osteoporosis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that couples ATP hydrolysis to proton pumping across membranes. Recently, there is increasing evidence that V-ATPase may contribute to the pathogenesis of bone resorption disorders due to it is predominantly expressed in osteoclasts also function in bone resorption making it a good candidate in a therapeutic target for osteoporosis. Osteoclasts are capable of generating an acidic microenvironment necessary for bone resorption by utilizing V-ATPases to pump protons into the resorption lacuna. In addition, it has been shown that therapeutic interventions have been proposed that specifically target inhibition of the osteoclast proton pump. Modulation of osteoclastic V-ATPase activity has been considered to be a suitable therapy for the treatment of osteoporosis. All theses findings suggest that V-ATPase have important biological effects in bone resorption that might be a promising therapeutic target for osteoporosis. In this review, we will briefly discuss the biological features of osteoporosis and summarize recent advances on the role of V-ATPase in the pathogenesis and treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marie PJ (2009) Bone cell-matrix protein interactions. Osteoporos Int 20:1037–1042

    Article  CAS  PubMed  Google Scholar 

  2. Roodman GD (2009) Pathogenesis of myeloma bone disease. Leukemia 23:435–441

    Article  CAS  PubMed  Google Scholar 

  3. Zhao B, Takami M, Yamada A et al (2009) Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med 15:1066–1071

    Article  CAS  PubMed  Google Scholar 

  4. Yao G, Feng H, Cai Y et al (2007) Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts. Biochem Biophys Res Commun 357:821–827

    Article  CAS  PubMed  Google Scholar 

  5. Xiao YT, Xiang LX, Shao JZ (2008) Vacuolar H(+)-ATPase. Int J Biochem Cell Biol 40:2002–2006

    Article  CAS  PubMed  Google Scholar 

  6. Su Y, Zhou A, Al-Lamki RS et al (2003) The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans. J Biol Chem 278:20013–20018

    Article  CAS  PubMed  Google Scholar 

  7. Laitala-Leinonen T, Vaananen HK (1999) Decreased bone resorption, osteoclast differentiation, and expression of vacuolar H+-ATPase in antisense DNA-treated mouse metacarpal and calvaria cultures ex vivo. Antisense Nucleic Acid Drug Dev 9:155–169

    CAS  PubMed  Google Scholar 

  8. Hu Y, Nyman J, Muhonen P et al (2005) Inhibition of the osteoclast V-ATPase by small interfering RNAs. FEBS Lett 579:4937–4942

    Article  CAS  PubMed  Google Scholar 

  9. Xu J, Feng HT, Wang C et al (2003) Effects of bafilomycin A1: an inhibitor of vacuolar H(+)-ATPases on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. J Cell Biochem 88:1256–1264

    Article  CAS  PubMed  Google Scholar 

  10. Nadler G, Morvan M, Delimoge I et al (1998) (2Z, 4E)-5-(5, 6-dichloro-2-indolyl)-2-methoxy-N-(1, 2, 2, 6, 6- pentamethylpiperidin-4-yl)-2, 4-pentadienamide, a novel, potent and selective inhibitor of the osteoclast V-ATPase. Bioorg Med Chem Lett 8:3621–3626

    Article  CAS  PubMed  Google Scholar 

  11. Xu J, Cheng T, Feng HT et al (2007) Structure and function of V-ATPases in osteoclasts: potential therapeutic targets for the treatment of osteolysis. Histol Histopathol 22:443–454

    CAS  PubMed  Google Scholar 

  12. Farina C, Gagliardi S (2002) Selective inhibition of osteoclast vacuolar H(+)-ATPase. Curr Pharm Des 8:2033–2048

    Article  CAS  PubMed  Google Scholar 

  13. Kornak U, Schulz A, Friedrich W et al (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063

    Article  CAS  PubMed  Google Scholar 

  14. Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476:33–42

    Article  CAS  PubMed  Google Scholar 

  15. Blair HC, Teitelbaum SL, Ghiselli R et al (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    Article  CAS  PubMed  Google Scholar 

  16. Vaananen HK, Karhukorpi EK, Sundquist K et al (1990) Evidence for the presence of a proton pump of the vacuolar H(+)-ATPase type in the ruffled borders of osteoclasts. J Cell Biol 111:1305–1311

    Article  CAS  PubMed  Google Scholar 

  17. Sundquist K (1993) Characterization of ATP-dependent proton transport in medullary bone-derived microsomes. Bone Miner 20:17–29

    Article  CAS  PubMed  Google Scholar 

  18. Mattsson JP, Keeling DJ (1996) [3H]Bafilomycin as a probe for the transmembrane proton channel of the osteoclast vacuolar H(+)-ATPase. Biochim Biophys Acta 1280:98–106

    Article  PubMed  Google Scholar 

  19. Hall TJ (1994) Cytotoxicity of vacuolar H(+)-ATPase inhibitors to UMR-106 rat osteoblasts: an effect on iron uptake into cells? Cell Biol Int 18:189–193

    Article  CAS  PubMed  Google Scholar 

  20. Francis MJ, Lees RL, Trujillo E et al (2002) ATPase pumps in osteoclasts and osteoblasts. Int J Biochem Cell Biol 34:459–476

    Article  CAS  PubMed  Google Scholar 

  21. Inoue T, Wang Y, Jefferies K et al (2005) Structure and regulation of the V-ATPases. J Bioenergy Biomembr 37:393–398

    Article  CAS  Google Scholar 

  22. Qi J, Wang Y, Forgac M (2007) The vacuolar (H +)-ATPase: subunit arrangement and in vivo regulation. J Bioenergy Biomembr 39:423–426

    Article  CAS  Google Scholar 

  23. Drory O, Nelson N (2006) The emerging structure of vacuolar ATPases. Physiology (Bethesda) 21:317–325

    CAS  Google Scholar 

  24. Michigami T, Kageyama T, Satomura K et al (2002) Novel mutations in the a3 subunit of vacuolar H(+)-adenosine triphosphatase in a Japanese patient with infantile malignant osteopetrosis. Bone 30:436–439

    Article  CAS  PubMed  Google Scholar 

  25. Niikura K (2006) Vacuolar ATPase as a drug discovery target. Drug News Perspectives 19:139–144

    Article  CAS  PubMed  Google Scholar 

  26. Cipriano DJ, Wang Y, Bond S et al (2008) Structure and regulation of the vacuolar ATPases. Biochim Biophys Acta 1777:599–604

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Inoue T, Forgac M (2004) TM2 but not TM4 of subunit c′′ interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking. J Biol Chem 279:44628–44638

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Cipriano DJ, Forgac M (2007) Arrangement of subunits in the proteolipid ring of the V-ATPase. J Biol Chem 282:34058–34065

    Article  CAS  PubMed  Google Scholar 

  29. Blake-Palmer KG, Su Y, Smith AN et al (2007) Molecular cloning and characterization of a novel form of the human vacuolar H+-ATPase e-subunit: an essential proton pump component. Gene 393:94–100

    Article  CAS  PubMed  Google Scholar 

  30. Supek F, Supekova L, Mandiyan S et al (1994) A novel accessory subunit for vacuolar H(+)-ATPase from chromaffin granules. J Biol Chem 269:24102–24106

    CAS  PubMed  Google Scholar 

  31. Schoonderwoert VT, Martens GJ (2002) Targeted disruption of the mouse gene encoding the V-ATPase accessory subunit Ac45. Mol Membr Biol 19:67–71

    Article  CAS  PubMed  Google Scholar 

  32. Demirci FY, White NJ, Rigatti BW et al (2001) Identification, genomic structure, and screening of the vacuolar proton-ATPase membrane sector-associated protein M8–9 gene within the COD1 critical region (Xp11.4). Mol Vis 7:234–239

    CAS  PubMed  Google Scholar 

  33. Da Silva N, Shum WW, El-Annan J et al (2007) Relocalization of the V-ATPase B2 subunit to the apical membrane of epididymal clear cells of mice deficient in the B1 subunit. Am J Physiol Cell Physiol 293:C199–C210

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Z, Zheng Y, Mazon H et al (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283:35983–35995

    Article  CAS  PubMed  Google Scholar 

  35. Perez-Sayans M, Garcia-Garcia A, Reboiras-Lopez MD et al (2009) Role of V-ATPases in solid tumors: importance of the subunit C (Review). Int J Oncol 34:1513–1520

    Article  CAS  PubMed  Google Scholar 

  36. Graham LA, Hill KJ, Stevens TH (1995) VMA8 encodes a 32-kDa V1 subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase required for function and assembly of the enzyme complex. J Biol Chem 270:15037–15044

    Article  CAS  PubMed  Google Scholar 

  37. Nelson H, Mandiyan S, Nelson N (1995) A bovine cDNA and a yeast gene (VMA8) encoding the subunit D of the vacuolar H(+)-ATPase. Proc Natl Acad Sci USA 92:497–501

    Article  CAS  PubMed  Google Scholar 

  38. Hirsch S, Strauss A, Masood K et al (1988) Isolation and sequence of a cDNA clone encoding the 31-kDa subunit of bovine kidney vacuolar H+-ATPase. Proc Natl Acad Sci USA 85:3004–3008

    Article  CAS  PubMed  Google Scholar 

  39. Imai-Senga Y, Sun-Wada GH, Wada Y et al (2002) A human gene, ATP6E1, encoding a testis-specific isoform of H(+)-ATPase subunit E. Gene 289:7–12

    Article  CAS  PubMed  Google Scholar 

  40. Graf R, Lepier A, Harvey WR et al (1994) A novel 14-kDa V-ATPase subunit in the tobacco hornworm midgut. J Biol Chem 269:3767–3774

    CAS  PubMed  Google Scholar 

  41. Muench SP, Huss M, Song CF et al (2009) Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. J Mol Biol 386:989–999

    Article  CAS  PubMed  Google Scholar 

  42. Supekova L, Sbia M, Supek F et al (1996) A novel subunit of vacuolar H(+)-ATPase related to the b subunit of F-ATPases. J Exp Biol 199:1147–1156

    CAS  PubMed  Google Scholar 

  43. Geyer M, Fackler OT, Peterlin BM (2002) Subunit H of the V-ATPase involved in endocytosis shows homology to beta-adaptins. Mol Biol Cell 13:2045–2056

    Article  CAS  PubMed  Google Scholar 

  44. Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324

    Article  CAS  PubMed  Google Scholar 

  45. Baron R, Neff L, Louvard D et al (1985) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101:2210–2222

    Article  CAS  PubMed  Google Scholar 

  46. Feng S, Deng L, Chen W et al (2009) Atp6v1c1 is an essential component of the osteoclast proton pump and in F-actin ring formation in osteoclasts. Biochem J 417:195–203

    Article  CAS  PubMed  Google Scholar 

  47. Laitala-Leinonen T, Lowik C, Papapoulos S et al (1999) Inhibition of intravacuolar acidification by antisense RNA decreases osteoclast differentiation and bone resorption in vitro. J Cell Sci 112(Pt 21):3657–3666

    CAS  PubMed  Google Scholar 

  48. Lee BS, Holliday LS, Ojikutu B et al (1996) Osteoclasts express the B2 isoform of vacuolar H(+)-ATPase intracellularly and on their plasma membranes. Am J Physiol 270:C382–C388

    CAS  PubMed  Google Scholar 

  49. Mattsson JP, Skyman C, Palokangas H et al (1997) Characterization and cellular distribution of the osteoclast ruffled membrane vacuolar H+-ATPase B-subunit using isoform-specific antibodies. J Bone Miner Res 12:753–760

    Article  CAS  PubMed  Google Scholar 

  50. Chen SH, Bubb MR, Yarmola EG et al (2004) Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem 279:7988–7998

    Article  CAS  PubMed  Google Scholar 

  51. Holliday LS, Lu M, Lee BS et al (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275:32331–32337

    Article  CAS  PubMed  Google Scholar 

  52. Okumura S, Mizoguchi T, Sato N et al (2006) Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks. Bone 39:684–693

    Article  CAS  PubMed  Google Scholar 

  53. Li YP, Chen W, Liang Y et al (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–451

    Article  CAS  PubMed  Google Scholar 

  54. Manolson MF, Yu H, Chen W et al (2003) The a3 isoform of the 100-kDa V-ATPase subunit is highly but differentially expressed in large (> or = 10 nuclei) and small (< or = nuclei) osteoclasts. J Biol Chem 278:49271–49278

    Article  CAS  PubMed  Google Scholar 

  55. Sobacchi C, Frattini A, Orchard P et al (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–1773

    Article  CAS  PubMed  Google Scholar 

  56. Smith AN, Jouret F, Bord S et al (2005) Vacuolar H+-ATPase d2 subunit: molecular characterization, developmental regulation, and localization to specialized proton pumps in kidney and bone. J Am Soc Nephrol 16:1245–1256

    Article  CAS  PubMed  Google Scholar 

  57. Visentin L, Dodds RA, Valente M et al (2000) A selective inhibitor of the osteoclastic V-H(+)-ATPase prevents bone loss in both thyroparathyroidectomized and ovariectomized rats. J Clin Invest 106:309–318

    Article  CAS  PubMed  Google Scholar 

  58. Sundquist K, Lakkakorpi P, Wallmark B et al (1990) Inhibition of osteoclast proton transport by bafilomycin A1 abolishes bone resorption. Biochem Biophys Res Commun 168:309–313

    Article  CAS  PubMed  Google Scholar 

  59. Niikura K, Takeshita N, Takano M (2005) A vacuolar ATPase inhibitor, FR167356, prevents bone resorption in ovariectomized rats with high potency and specificity: potential for clinical application. J Bone Miner Res 20:1579–1588

    Article  CAS  PubMed  Google Scholar 

  60. Sorensen MG, Henriksen K, Neutzsky-Wulff AV et al (2007) Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J Bone Miner Res 22:1640–1648

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the China National Science Foundation grants No. 30901526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, FL., Li, X., Lu, WG. et al. The vacuolar ATPase in bone cells: a potential therapeutic target in osteoporosis. Mol Biol Rep 37, 3561–3566 (2010). https://doi.org/10.1007/s11033-010-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0004-7

Keywords

Navigation