Skip to main content

Advertisement

Log in

Regulation of MMP-2 expression and activity by β-1,3-N-acetylglucosaminyltransferase-8 in AGS gastric cancer cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

β-1,3-N-acetylglucosaminyltransferase-8(β3Gn-T8) catalyzes the transfer of GlcNAc to the non-reducing terminus of the Galβ1-4GlcNAc of tetraantennary N-glycan in vitro. It has been reported to be involved in malignant tumors, but a comprehensive understanding of how the glycolsyltransferase correlates with the invasive potential of human gastric cancer is not currently available. Therefore, we investigated the ability and possible mechanism involved with β3Gn-T8 in modulating matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) in AGS gastric cancer cells. Here, we found out that siRNA-mediated suppression of the β3Gn-T8 could directly reduce the MMP-2 expression and activity as observed in RT-PCR, western blot and gelatin zymography analysis. Meanwhile, TIMP-2 expression had been increased. Cell invasion assay using matrigel matrix-coated transwell inserts showed that the invasive property was greatly suppressed in β3Gn-T8 siRNA transfected cells. Furthermore, cells overexpressing β3Gn-T8 gene (when transfected with pEGFP-C1 plasmid) also expressed MMP-2 gene, but TIMP-2 expression had been inhibited. The invasive ability of these cells was also enhanced. Protein–protein interaction analysis using STRING database showed that β3Gn-T8 and MMP-2 may have related signal pathway. In summary, our results reveal a new mechanism by which β3Gn-T8 can regulate MMP-2 and TIMP-2. We suggest that β3Gn-T8 can be used as a novel therapeutic target for human gastric treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hakomori SI (1989) Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 52:257–331

    Article  CAS  PubMed  Google Scholar 

  2. Hakomori SI (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 99(16):10231–10233. doi:10.1073/pnas.172380699

    Article  CAS  PubMed  Google Scholar 

  3. Pierce M, Buckhaults P, Chen L, Fregien N (1997) Regulation of N-acetylglucosaminyltransferase V and Asn-linked oligosaccharide beta(l,6) branching by a growth factor signaling pathway and effects on cell adhesion and metastatic potential. Glycoconj J 14(5):623–630. doi:10.1023/A:1018592627696

    Article  CAS  PubMed  Google Scholar 

  4. Ishida H, Togayachi A, Sakai T, Iwai T, Hiruma T, Sato T, Okubo R, Inaba N, Kudo T, Gotoh M, Shoda J, anaka N, Narimatsu H (2005) A novel beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T8), which synthesizes poly-N-acetyllactosamine, is dramatically upregulated in colon cancer. FEBS Lett 579:71–78. doi:10.1016/j.febslet.2004.11.037

    Article  CAS  PubMed  Google Scholar 

  5. Huang CQ, Zhou JL, Wu SL, Shan YX, Ten SL, Yu L (2004) Cloning and tissue distribution of the human B3GALT7 gene, a member of the β1,3-glycosyltransferase family. Glycoconj J 21:267–273. doi:10.1023/B:GLYC.0000045098.78968.4c

    Article  CAS  PubMed  Google Scholar 

  6. Hou R, Cao B, Chen Z, Li Y, Ning T, Li C, Xu C, Chen Z (2009) Association of cytotoxic T lymphocyte-associated antigen-4 gene haplotype with the susceptibility to gastric cancer. Mol Biol Rep 37(1):515–520. doi:10.1007/s11033-009-9705-1

    Article  PubMed  Google Scholar 

  7. Zhang L, Huang H, Wu K, Wang M, Wu B (2009) Impact of BTG2 expression on proliferation and invasion of gastric cancer cells in vitro. Mol Boil Rep. doi:10.1007/s11033-009-9777-y

    Article  Google Scholar 

  8. Shi L, Zhao M, Luo Q, Ma YM, Zhong JL, Yuan XH, Huang CZ (2009) Overexpression of PIP5KL1 suppresses cell proliferation and migration in human gastric cancer cells. Mol Biol Rep. doi:10.1007/s11033-009-9701-5

    Article  PubMed  Google Scholar 

  9. Murray GI, Duncan ME, Arbuckle E, Melvin WT, Fothergill JE (1998) Matrix metalloproteinases and their inhibitors in gastric cancer. Gut 43:791–797. doi:10.1136/gut.43.6.791

    Article  CAS  PubMed  Google Scholar 

  10. Hart IR, Saini A (1992) Biology of tumour metastasis. Lancet 339:1453–1457. doi:10.1016/0140-6736(92)92039-I

    Article  CAS  PubMed  Google Scholar 

  11. Kohn EC, Liotta LA (1995) Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res 55:1856–1862

    CAS  PubMed  Google Scholar 

  12. Li Y, Sun DL, Duan YN, Zhang XJ, Wang N, Zhou RM, Chen ZF, Wang SJ (2010) Association of functional polymorphisms in MMPs genes with gastric cardia adenocarcinoma and esophageal squamous cell carcinoma in high incidence region of North China. Mol Biol Rep 37(1):197–205. doi:10.1007/s11033-009-9593-4

    Article  CAS  PubMed  Google Scholar 

  13. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68. doi:10.1038/284067a0

    Article  CAS  PubMed  Google Scholar 

  14. Davies B, Miles DW, Happerfield LC, Naylor MS, Borrow LG, Rubens RD, Balkwill FR (1993) Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 67:1126–1131

    Article  CAS  PubMed  Google Scholar 

  15. Davies B, Waxman J, Wasan H, Abel P, Williams G, Krausz T, Neal D, Thomas D, Hanby A, Balkwill F (1993) Levels of matrix metalloproteinase in bladder cancer correlate with tumor grade and invasion. Cancer Res 53:5365–5369

    CAS  PubMed  Google Scholar 

  16. Mrena J, Wiksten JP, Nordling S, Kokkola A, Ristimäki A, Haglund C (2006) MMP-2 but not MMP-9 associated with COX-2 and survival in gastric cancer. J Clin Pathol 59:618–623. doi:10.1136/jcp.2005.033761

    Article  CAS  PubMed  Google Scholar 

  17. Feng G, Tan Y (2000) Expression and significance of MMP2 and type IV collagen in gastric cancer. Zhonghua Wai Ke Za Zhi 38(10):775–777

    CAS  PubMed  Google Scholar 

  18. Miao X, Yu C, Tan W, Xiong P, Liang G, Lu W, Lin D (2003) A functional polymorphism in the matrix metalloproteinase-2 gene promoter (−1306C/T) is associated with risk of development but not metastasis of gastric cardia adenocarcinoma. Cancer Res 63:3987–3990

    CAS  PubMed  Google Scholar 

  19. Kubben FJGM, Sier CFM, Meijer MJW, van den Berg M, van der Reijden JJ, Griffioen G, van de Velde CJH, Lamers CBHW, Verspaget HW (2006) Clinical impact of MMP and TIMP gene polymorphisms in gastric cancer. Br J Cancer 95:744–751. doi:10.1038/sj.bjc.6603307

    Article  CAS  PubMed  Google Scholar 

  20. Douglas DA, Shi YE, Sang QA (1997) Computational sequence analysis of the tissue inhibitor of metallo-proteinase family. J Protein Chem 16(4):237–255. doi:10.1023/A:1026348808069

    Article  CAS  PubMed  Google Scholar 

  21. Morgunova E, Ari T, Ulrich B, Karl T (2002) Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc Natl Acad Sci USA 99(11):7414–7419. doi:10.1073/pnas.102185399

    Article  CAS  PubMed  Google Scholar 

  22. Overall CM, Tam E, McQuibban GA, Morrison C, Wallon UM, Bigg HF, King AE, Roberts CR (2000) Domain interactions in the gelatinase A.TIMP-2.MT1-MMP activation complex. The ectodomain of the 44-kDa form of membrane type-1 matrix metalloproteinase does not modulate gelatinase A activation. J Biol Chem 275(50):39497–39506. doi:10.1074/jbc.M005932200

    Article  CAS  PubMed  Google Scholar 

  23. Bigg HF, Shi YE, Liu YE, Steffensen B, Overall CM (1997) Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A. TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. J Biol Chem 272(24):14500–15496. doi:10.1074/jbc.272.24.15496

    Article  Google Scholar 

  24. Kai HS, Butler GS, Morrison CJ, King AE, Pelman GR, Overall CM (2002) Utilization of a novel recombinant myoglobin fusion protein expression system to characterize the tissue inhibitor of metalloproteinase (TIMP)-4 and TIMP-2 C-terminal domain and tails by mutagenesis. The importance of acidic residues in binding them. J Biol Chem 277(50):48696–48707. doi:10.1074/jbc.M209177200

    Article  CAS  PubMed  Google Scholar 

  25. Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M (2002) Aberrant N-glycosylation of β1 integrin causes reduced α5β1 integrin clustering and stimulates cell migration. Cancer Res 62:6837–6845

    CAS  PubMed  Google Scholar 

  26. Niu XD, Fan XD, Sun J, Ting P, Narula S, Lundell D (2004) Inhibition of fucosyltransferase VII by gallic acid and its derivatives. Arch Biochem Biophys 425(1):51–57. doi:10.1016/j.abb.2004.02.039

    Article  CAS  PubMed  Google Scholar 

  27. Albini A, Melchiori A, Santi L, Liotta LA, Brown PD, Stetler-Stevenson WG (1991) Tumor cell invasion inhibited by TIMP-2. J Natl Cancer Inst 83(11):775–779. doi:10.1093/jnci/83.11.775

    Article  CAS  PubMed  Google Scholar 

  28. Goñi J, Esteban FJ, de Mendizábal NV, Sepulcre J, Ardanza-Trevijano S, Agirrezabal I, Villoslada P (2008) A computational analysis of protein–protein interaction networks in neurodegenerative diseases. BMC Syst Biol 2(52):1752–1762. doi:10.1186/1752-0509-2-52

    Google Scholar 

  29. Dortay H, Mehnert N, Burkle L, Schmulling T, Heyl A (2006) Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS j 273(20):4631–4644. doi:10.1111/j.1742-4658.2006.05467.x

    Article  CAS  PubMed  Google Scholar 

  30. Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6:202–210. doi:10.1038/nrd2195

    Article  CAS  PubMed  Google Scholar 

  31. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:433–437. doi:10.1093/nar/gki005

    Article  Google Scholar 

  32. Young DF, Carlos TS, Hagmaier K, Fan L, Randall RE (2007) AGS and other tissue culture cells can unknowingly be persistently infected with PIV5; a virus that blocks interferon signalling by degrading STAT1. Virology 365(1):238–240. doi:10.1016/j.virol.2007.03.061

    Article  CAS  PubMed  Google Scholar 

  33. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370:61–65. doi:10.1038/370061a0

    Article  CAS  PubMed  Google Scholar 

  34. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338. doi:10.1074/jbc.270.10.5331

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg GI, Marmer BL, Grant GA, Eisen AZ, Wilhelm S, He CS (1989) Human 72-KDa type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci USA86(21):8207–8211

    Article  CAS  PubMed  Google Scholar 

  36. Trojanowska M (2000) Ets factors and regulation of the extracellular matrix. Oncogene 19(55):6464–6471

    Article  CAS  PubMed  Google Scholar 

  37. Behrens P, Rothe M, Wellmann A, Krischler J, Wernert N (2001) The Ets-1 transcription factor is up-regulated together with MMP 1 and MMP 9 in the stroma of pre-invasive breast cancer. J Pathol 194:43–50. doi:10.1002/path.844

    Article  CAS  PubMed  Google Scholar 

  38. Behrens P, Mathiak M, Mangold E, Kirdorf S, Wellmann A, Fogt F, Rothe M, Florin A, Wernert N (2003) Stromal expression of invasion-promoting, matrix-degrading proteases MMP-1 and -9 and the Ets 1 transcription factor in HNPCC carcinomas and sporadic colorectal cancers. Int J Cancer 107(2):183–188. doi:10.1002/ijc.11336

    Article  CAS  PubMed  Google Scholar 

  39. Okuducu AF, Zils U, Michaelis SA, Michaelides S, von Deimling A (2006) Ets-1 is up-regulated together with its target gene products matrix metalloproteinase-2 and matrix metalloproteinase-9 in atypical and anaplastic meningiomas. Histopathology 48(7):836–845. doi:10.1111/j.1365-2559.2006.02432.x

    Article  CAS  PubMed  Google Scholar 

  40. Zhang GS, Fahmy RG, diGirolamo N, Khachigian LM (2006) JUN siRNA regulates matrix metalloproteinase-2 expression, microvascular endothelial growth and retinal neovascularisation. J Cell Sci 119:3219–3226. doi:10.1242/jcs.03059

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Zhang J, Yang X, Han X (2007) Several transcription factors regulate COX-2 gene expression in pancreatic b-cells. Mol Biol Rep 34:199–206. doi:10.1007/s11033-007-9085-3

    Article  CAS  PubMed  Google Scholar 

  42. Iwai T, Kudo T, Kawamoto R, Kubota T, Togayachi A, Hiruma T, Okada T, Kawamoto T, Morozumi K, Narimatsu H (2005) Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. Proc Natl Acad Sci USA102(12):4572–4577. doi:10.1073/pnas.0407983102

    Article  CAS  PubMed  Google Scholar 

  43. Ko JH, Miyoshi E, Noda K, Ekuni A, Kang RJ, Taniguchi N (1999) Regulation of the GnT-V promoter by transcription factor Ets-1 in various cancer cell lines. J Biol Chem 274:22941–22948. doi:10.1074/jbc.274.33.22941

    Article  CAS  PubMed  Google Scholar 

  44. Kang RJ, Saito H, Ihara Y, Miyoshi E, Koyama N, Sheng Y, Taniguchi N (1996) Transcriptional regulation of the N-acetylglucosaminyltransferase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1. J Biol Chem 271:26706–26712. doi:10.1074/jbc.271.43.26706

    Article  CAS  PubMed  Google Scholar 

  45. Takeshi S, Kiyoshi F (2007) Sequential action of Ets-1 and Sp1 in the activation of the human β-1,4-galactosyltransferase V gene involved in abnormal glycosylation characteristic of cancer cells. J Biol Chem 282:27702–27712. doi:10.1074/jbc.M611862200

    Article  Google Scholar 

  46. Seko A, Yamashita K (2008) Activation of β1,3-N-acetylglucosaminyltransferase-2 (β3Gn-T2) by β3Gn-T8. J Biol Chem 283:33094–33100. doi:10.1074/jbc.M806933200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from National Natural Science Foundation of China to Q.C. (No. 30670462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiliang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Liu, Z., Tu, Y. et al. Regulation of MMP-2 expression and activity by β-1,3-N-acetylglucosaminyltransferase-8 in AGS gastric cancer cells. Mol Biol Rep 38, 1541–1550 (2011). https://doi.org/10.1007/s11033-010-0262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0262-4

Keywords

Navigation