Skip to main content

Advertisement

Log in

Genome-wide screen for aberrantly expressed miRNAs reveals miRNA profile signature in breast cancer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dysregulation in the expression of miRNAs contributes to the occurrence and development of many human cancers. We herein attempted to obtain the potential association between miRNA expression profile and breast cancer by applying high-throughput sequencing technology. Small RNAs from seven paired tumor and adjacent normal tissue samples were sequenced. To determine the miRNA expression profiles in tissues and sera, another five equally pooled serum samples from 20 patients and 30 normal women were sequenced. Despite a similar number in abundantly expressed miRNAs across samples, we detected varying miRNA expression profiles. Some miRNAs showed inconsistent or opposite dysregulation trends across different tumor tissues, including some abundantly expressed miRNA gene clusters and gene families. Wilcoxon sign-rank test for paired samples analysis revealed that abnormal miRNAs showed a higher level of variation across the seven tumor samples. We also completely surveyed abnormal miRNAs expressed in tumor and serum tissues in the mixed datasets based on the relative expression levels. Most of these miRNAs were significantly down-regulated in tumor samples, but nine abnormal miRNAs (miR-18a, 19a, 20a, 30a, 103b, 126, 126*, 192, 1287) were consistently expressed in tumor tissues and serum samples. Based on experimentally validated target mRNAs, functional enrichment analysis indicated that these abnormal miRNAs and miRNA groups (miRNA gene clusters and gene families) have important roles in multiple biological processes. Dynamic miRNA expression profiles, various abnormal miRNA profiles and complexity of the miRNA regulatory network reveal that the miRNA expression profile is a potential biomarker for classifying or detecting human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  3. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  4. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    Article  PubMed  CAS  Google Scholar 

  5. Perera RJ, Ray A (2007) MicroRNAs in the search for understanding human diseases. BioDrugs 21:97–104

    Article  PubMed  CAS  Google Scholar 

  6. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  PubMed  CAS  Google Scholar 

  7. Calin GA (2006) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia (vol 353, pg 1793, 2005). New Engl J Med 355:533

    Google Scholar 

  8. Caldas C, Brenton JD (2005) Sizing up miRNAs as cancer genes. Nat Med 11:712–714

    Article  PubMed  CAS  Google Scholar 

  9. Cha YH, Kim NH, Park C, Lee I, Kim HS et al (2012) miRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle 11:1273–1281

    Article  PubMed  CAS  Google Scholar 

  10. Cubillos-Ruiz JR, Baird JR, Tesone AJ, Rutkowski MR, Scarlett UK et al (2012) Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer. Cancer Res 72:1683–1693

    Article  PubMed  CAS  Google Scholar 

  11. Zhu R, Yang Y, Tian Y, Bai J, Zhang X et al (2012) Ascl2 knockdown results in tumor growth arrest by miRNA-302b-related inhibition of colon cancer progenitor cells. PLoS ONE 7:e32170

    Article  PubMed  CAS  Google Scholar 

  12. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  13. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  14. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA 10b in breast cancer. Nature 449:682–688

    Article  PubMed  CAS  Google Scholar 

  15. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM et al (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    Article  PubMed  CAS  Google Scholar 

  16. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J et al (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283:29897–29903

    Article  PubMed  CAS  Google Scholar 

  17. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    Article  PubMed  CAS  Google Scholar 

  18. Mertens-Talcott SU, Chintharlapalli S, Li MR, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G(2)-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67:11001–11011

    Article  PubMed  CAS  Google Scholar 

  19. Adams BD, Cowee DM, White BA (2009) The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ER alpha) signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol Endocrinol 23:1215–1230

    Article  PubMed  CAS  Google Scholar 

  20. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J et al (2008) Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27:5643–5647

    Article  PubMed  CAS  Google Scholar 

  21. Kong W, He L, Coppola M, Guo J, Esposito NN et al (2010) MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285:17869–17879

    Article  PubMed  CAS  Google Scholar 

  22. Castaneda CA, Agullo-Ortuno MT, Fresno Vara JA, Cortes-Funes H, Gomez HL et al (2011) Implication of miRNA in the diagnosis and treatment of breast cancer. Expert Rev Anticancer Ther 11:1265–1275

    Article  PubMed  CAS  Google Scholar 

  23. Wu Q, Wang C, Lu Z, Guo L, Ge Q (2012) Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta 413:1058–1065

    Article  PubMed  CAS  Google Scholar 

  24. Volinia S, Galasso M, Sana ME, Wise TF, Palatini J et al (2012) Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA 109:3024–3029

    Article  PubMed  CAS  Google Scholar 

  25. Png KJ, Yoshida M, Zhang XH, Shu W, Lee H et al (2011) MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 25:226–231

    Article  PubMed  CAS  Google Scholar 

  26. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC et al (2011) miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res 39:D163–D169

    Article  PubMed  Google Scholar 

  27. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  28. Chiang DY, Brown PO, Eisen MB (2001) Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles. Bioinformatics 17:S49–S55

    Article  PubMed  Google Scholar 

  29. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847

    Article  PubMed  CAS  Google Scholar 

  30. Guo L, Liang T, Gu W, Xu Y, Bai Y et al (2011) Cross-mapping events in miRNAs reveal potential miRNA-mimics and evolutionary implications. PLoS ONE 6:e20517

    Article  PubMed  CAS  Google Scholar 

  31. Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference—a crash course. Trends Genet 21:339–345

    Article  PubMed  CAS  Google Scholar 

  32. Hongay CF, Grisafi PL, Galitski T, Fink GR (2006) Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127:735–745

    Article  PubMed  CAS  Google Scholar 

  33. Stark A, Bushati N, Jan CH, Kheradpour P, Hodges E et al (2008) A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Gene Dev 22:8–13

    Article  PubMed  CAS  Google Scholar 

  34. Lai EC, Wiel C, Rubin GM (2004) Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. RNA 10:171–175

    Article  PubMed  CAS  Google Scholar 

  35. Guo L, Lu Z (2010) Global expression analysis of miRNA gene cluster and family based on isomiRs from deep sequencing data. Comput Biol Chem 34:165–171

    Article  PubMed  CAS  Google Scholar 

  36. Yu J, Wang F, Yang GH, Wang FL, Ma YN et al (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Bioph Res Co 349:59–68

    Article  CAS  Google Scholar 

  37. Bomben R, Gobessi S, Dal Bo M, Volinia S, Marconi D et al (2012) The miR-17 approximately 92 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes. Leukemia 26:1584–1593

    Article  PubMed  CAS  Google Scholar 

  38. Tong MH, Mitchell DA, McGowan SD, Evanoff R, Griswold MD (2012) Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 86:72

    Article  PubMed  Google Scholar 

  39. Feuermann Y, Robinson GW, Zhu BM, Kang K, Raviv N et al (2012) The miR-17/92 cluster is targeted by STAT5 but dispensable for mammary development. Genesis 50:665–671

    Article  PubMed  CAS  Google Scholar 

  40. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20:589–599

    Article  PubMed  CAS  Google Scholar 

  41. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neurosci 12:399–408

    Article  PubMed  CAS  Google Scholar 

  42. Liu R, Chen X, Du Y, Yao W, Shen L et al (2011) Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem 58:610–618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate all the patients and healthy controls who participated in this research. We thank Juncheng Dai, Yongyue Wei and Jianling Bai for their help in statistic analysis. The work was supported by National Natural Science Foundation of China (Nos. 30901232, 81072389 and 81102182), China Postdoctoral Science Foundation funded project (No. 2012M521100), University Science Research Project of Jiangsu Province (No. 12KJB310003), Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1201022B), Science and Technology Development Fund Key Project of Nanjing Medical University (No. 2012NJMU001), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

The authors declare no potential conflict of interests with respect to the authorship and/or publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Wu or Feng Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_2277_MOESM1_ESM.tif

Figure S1. Trends in expression of abundantly expressed miRNAs (at least 0.30%) in the 7 paired tumor and adjacent normal samples. (A) Trends of miRNA expression in 7 tumor tissue samples; (B) Trends of miRNA expression in 7 normal tissue samples. Except for several specific miRNAs, the rest of the miRNAs exhibited lower expression levels. Supplementary material 1 (TIFF 848 kb)

11033_2012_2277_MOESM2_ESM.tif

Figure S2. Distribution of abundantly expressed miRNA species between tumor and adjacent normal samples. P-T: indicates patient-tumor sample, P-N: indicates patient-adjacent normal sample, All-T: indicates all tumor samples (from 7 patients), All-N: indicates all adjacent normal samples (from 7 patients). Supplementary material 2 (TIFF 2578 kb)

11033_2012_2277_MOESM3_ESM.tif

Figure S3. Abundantly expressed miRNAs and their dynamic expression profiles. (A) Distribution of abundantly expressed miRNA in mixed tumor/adjacent normal tissues and serum normal/tumor samples. Relative expression levels of these miRNAs were at least 0.30% in a sample. T-T: indicates mixed tumor tissue sample (from 7 patients); T-N: indicates mixed adjacent normal tissue sample (from 7 patients); S-T: indicates mixed serum tumor sample; S-N: indicates mixed serum normal sample; (B) Fold change values (log2) of the common miRNA species based on the normal sample. Aberrantly expressed miRNAs (fold change value is more than 1.50, or less than -1.50) were highlighted in yellow (up-regulation) and green (down-regulation) background. Supplementary material 3 (TIFF 2376 kb)

11033_2012_2277_MOESM4_ESM.tif

Figure S4. Significantly dysregulated miRNAs detected in at least two patients. (A) There are 3 commonly up-regulated miRNAs in three patients; (B) There are 2 commonly up-regulated miRNAs in two patients; (C) There are 10 commonly down-regulated miRNAs in two patients; (D) 18 miRNAs detected in two patients exhibited opposite dysregulation patterns. Supplementary material 4 (TIFF 817 kb)

11033_2012_2277_MOESM5_ESM.tif

Figure S5. Principal component analysis (PCA) of all samples based on abundantly expressed miRNAs (more than 1.00% in a sample). (A) Based on relative expression levels; (B) Based on normalized data of relative expression levels. All samples were color coded in blue (tumor samples) and red (normal samples). Supplementary material 5 (TIFF 175 kb)

Supplementary material 6 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Zhao, Y., Yang, S. et al. Genome-wide screen for aberrantly expressed miRNAs reveals miRNA profile signature in breast cancer. Mol Biol Rep 40, 2175–2186 (2013). https://doi.org/10.1007/s11033-012-2277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2277-5

Keywords

Navigation