Skip to main content

Advertisement

Log in

The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The disturbed immune homeostasis is involved in the pathogenesis of an array of autoimmune diseases like rheumatoid arthritis (RA). The adenosine monophosphate-activated protein kinase (AMPK) with a pivotal role in immunometabolism process, also plays a regulatory function in the immune system. This study aims to evaluate the alteration of AMPK gene expression in peripheral blood leukocytes of RA patients and its effects on disease severity as well as plasma levels of anti-inflammatory cytokines. 60 RA patients, including 30 newly diagnosed and 30 patients whose disease were under controlled with the combinational disease-modifying anti-rheumatic drug (DMARD), as well as 30 healthy subjects, were enrolled in our study. The gene expression of AMPK was evaluated using real-time PCR method. The plasma concentrations of IL-10 and TGF-β1 were measured using sandwich ELISA. The gene expression of AMPK was significantly lower in the newly diagnosed RA patients in comparison with the control group (P = 0.049). Inversely, in RA patients who received DMARD therapy, the gene expression of AMPK was significantly higher than the control group (P = 0.003). There was no significant correlation between AMPK gene expression and plasma levels of IL-10 and TGF-β1. The plasma levels of TGF-β1 was significantly higher in both newly diagnosed and under-treatment patients compared with healthy subjects (P < 0.001). The impaired gene expression of AMPK in peripheral blood leukocytes and elevated levels of plasma TGF-β1 can be contributed in RA pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fazal SA, Khan M, Nishi SE, Alam F, Zarin N, Bari MT, Ashraf GM (2018) A clinical update and global economic burden of rheumatoid arthritis. Endocr Metab Immune Disord Drug Targets 18:98–109

    Article  CAS  Google Scholar 

  2. Klareskog L, Padyukov L, Ronnelid J, Alfredsson L (2006) Genes, environment and immunity in the development of rheumatoid arthritis. Curr Opin Immunol 18:650–655

    Article  CAS  Google Scholar 

  3. Kim J (2018) Regulation of immune cell functions by metabolic reprogramming. J Immunol Res. https://doi.org/10.1155/2018/8605471

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bettencourt IA, Powell JD (2017) Targeting metabolism as a novel therapeutic approach to autoimmunity, inflammation, and transplantation. J Immunol 198:999–1005

    Article  CAS  Google Scholar 

  5. Chimenti M, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R (2015) The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis 6:e1887

    Article  CAS  Google Scholar 

  6. Fogarty S, Hardie D (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochimi Biophys Acta Proteins Proteom 1804:581–591

    Article  CAS  Google Scholar 

  7. Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181:8633–8641

    Article  CAS  Google Scholar 

  8. MacIver NJ, Blagih J, Saucillo DC, Tonelli L, Griss T, Rathmell JC, Jones RG (2011) The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol 187:4187

    Article  CAS  Google Scholar 

  9. Yu D, Peng Y, Ayaz-Guner S, Gregorich ZR, Ge Y (2016) Comprehensive characterization of AMP-activated protein kinase catalytic domain by top-down mass spectrometry. J Am Soc Mass Spectr 27:220–232

    Article  CAS  Google Scholar 

  10. Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med 89:667–676

    Article  CAS  Google Scholar 

  11. He C, Li H, Viollet B, Zou M-H, Xie Z (2015) AMPK Suppresses vascular inflammation in vivo by inhibiting signal transducer and activator of transcription-1. Diabetes 64:4285–4297

    Article  CAS  Google Scholar 

  12. Komai T, Inoue M, Okamura T, Morita K, Iwasaki Y, Sumitomo S, Shoda H, Yamamoto K, Fujio K (2018) Transforming growth factor-β and interleukin-10 synergistically regulate humoral immunity via modulating metabolic signals. Front Immunol 9:1364

    Article  Google Scholar 

  13. Loftus RM, Finlay DK (2016) Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem 291:1–10

    Article  CAS  Google Scholar 

  14. Zhu YP, Brown JR, Sag D, Zhang L, Suttles J (2015) Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J Immunol 194:584–594

    Article  CAS  Google Scholar 

  15. Gao J, Ye J, Ying Y, Lin H, Luo Z (2018) Negative regulation of TGF-β by AMPK and implications in the treatment of associated disorders. Acta Biochim et Biophys Sinica 50:523–531

    Article  CAS  Google Scholar 

  16. Hernández-Bello J, Oregón-Romero E, Vázquez-Villamar M, García-Arellano S, Valle Y, Padilla-Gutiérrez J, Román-Fernández I, Palafox-Sánchez C, Martínez-Bonilla G, Muñoz-Valle J (2017) Aberrant expression of interleukin-10 in rheumatoid arthritis: relationship with IL10 haplotypes and autoantibodies. Cytokine 95:88–96

    Article  Google Scholar 

  17. Cudrici CD, Pelletier M, Siegel R (2017) A potential target for methotrexate in macrophages: AMP-activated protein kinase. J Immnol 198:206–217

    Google Scholar 

  18. Shinde CG, Venkatesh M, Kumar TP, Shivakumar H (2014) Methotrexate: a gold standard for treatment of rheumatoid arthritis. J Pain Palliat Care Pharmacother 28:351–358

    Article  Google Scholar 

  19. Kola B, Grossman AB, Korbonits M (2008) The role of AMP-activated protein kinase in obesity. Obes Metab 36:198–211

    Article  CAS  Google Scholar 

  20. Stavropoulos-Kalinoglou A, Metsios GS, Koutedakis Y, Kitas GDJR (2010) Obesity in rheumatoid arthritis. Rheumatology 50:450–462

    Article  Google Scholar 

  21. Inoue E, Yamanaka H, Hara M, Tomatsu T, Kamatani N (2007) Comparison of disease activity score (DAS) 28-erythrocyte sedimentation rate and DAS28-C-reactive protein threshold values. Ann Rheum Dis 66:407–409

    Article  CAS  Google Scholar 

  22. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  23. Straub R, Cutolo M, Buttgereit F, Pongratz G (2010) Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med 267:543–560

    Article  CAS  Google Scholar 

  24. Sag D, Carling D, Stout RD, Suttles JJT (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181:8633–8641

    Article  CAS  Google Scholar 

  25. Mo C, Wang L, Zhang J, Numazawa S, Tang H, Tang X, Han X, Li J, Yang M, Wang ZJA (2014) The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal 20:574–588

    Article  CAS  Google Scholar 

  26. Guma M, Wang Y, Viollet B, Liu-Bryan R (2015) AMPK Activation by A-769662 Controls IL-6 expression in inflammatory arthritis. PLoS ONE 10:e0140452

    Article  Google Scholar 

  27. Carroll KC, Viollet B, Suttles J (2013) AMPKα1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling. J Leukoc Biol 94:1113–1121

    Article  Google Scholar 

  28. Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, Tian L, Shoor S, Roche NE, Goronzy JJ (2019) N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue. Inflammation 20:313

    CAS  Google Scholar 

  29. Choi HK, Hernán MA, Seeger JD, Robins JM, Wolfe F (2002) Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. The Lancet 359:1173–1177

    Article  CAS  Google Scholar 

  30. Zhu YP, Brown JR, Sag D, Zhang L, Suttles J (2015) Adenosine 5′-monophosphate—activated protein kinase regulates IL-10–mediated anti-inflammatory signaling pathways in macrophages. J Immunol 194:584–594

    Article  CAS  Google Scholar 

  31. Yang K, Blanco DB, Neale G, Vogel P, Avila J, Clish CB, Wu C, Shrestha S, Rankin S, Long L, Kc A, Chi H (2017) Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 548:602–606

    Article  CAS  Google Scholar 

  32. George MD, Baker JF (2016) The obesity epidemic and consequences for rheumatoid arthritis care. Curr Rheumatol Rep 18:6

    Article  Google Scholar 

  33. Daïen CI, Sellam J (2015) Obesity and inflammatory arthritis: impact on occurrence, disease characteristics and therapeutic response. RMD Open 29(1):e000012

    Article  Google Scholar 

  34. Xu XJ, Gauthier M-S, Hess DT, Apovian CM, Cacicedo JM, Gokce N, Farb M, Valentine RJ, Ruderman NB (2012) Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. J Lipid Res 53:792–801

    Article  CAS  Google Scholar 

  35. Al-Zifzaf DS, El Bakry SA, Mamdouh R, Shawarby LA, Ghaffar AYA, Amer HA, Alim AA, Sakr HM, Rahman RA (2015) FoxP3 + T regulatory cells in rheumatoid arthritis and the imbalance of the Treg/TH17 cytokine axis. Egypt Rheumatol 37:7–15

    Article  Google Scholar 

  36. Gonzalo-Gil E, Criado G, Santiago B, Dotor J, Pablos JL, Galindo M (2013) TGF-beta signalling is increased in rheumatoid synovium but TGF-beta blockade does not modify experimental arthritis. Clin Exp Immunol 174:245–255

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonzalo-Gil E, Criado G, Santiago B, Dotor J, Pablos JL, Galindo M (2013) Transforming growth factor (TGF)-beta signalling is increased in rheumatoid synovium but TGF-beta blockade does not modify experimental arthritis. Clin Exp Immunol 174:245–255

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pohlers D, Beyer A, Koczan D, Wilhelm T, Thiesen H-J, Kinne RW (2007) Constitutive upregulation of the transforming growth factor-β pathway in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 9:R59

    Article  Google Scholar 

  39. Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA (2009) Anti-inflammatory and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 9:447–453

    Article  CAS  Google Scholar 

  40. Xia T, Zheng X-F, Qian B-H, Fang H, Wang J-J, Zhang L-L, Pang Y-F, Zhang J, Wei X-Q, Xia Z-F (2015) Plasma interleukin-37 is elevated in patients with rheumatoid arthritis: its correlation with disease activity and Th1/Th2/Th17-related cytokines. Dis Mark=. https://doi.org/10.1155/2015/795043

    Article  Google Scholar 

  41. Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H (2010) mTOR regulation of autophagy. FEBS Lett 584:1287–1295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research council of Kermanshah University of Medical Sciences for financial support (Grant Number: 95708). This work was performed in partial fulfillment of the requirements for MSc degree of Zahra Samimi in the faculty of medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Taghadosi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samimi, Z., Kardideh, B., Zafari, P. et al. The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients. Mol Biol Rep 46, 6353–6360 (2019). https://doi.org/10.1007/s11033-019-05078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05078-x

Keywords

Navigation