Skip to main content
Log in

Calcium-sensing receptor in the development and treatment of pulmonary hypertension

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Calcium-sensing receptor (CaSR) is widely involved in the cell proliferation, differentiation, migration, adhesion and apoptosis, which can affect the vascular remodeling in the humanbody. The main ligand of CaSR is extracellular Ca2+. CaSR has the physiological significance in Ca2+ homeostasis. Pulmonary vascular remodeling is one of the main histopathological changes of pulmonary hypertension (PH). The abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) results in the pulmonary vascular remodeling. CaSR is an important regulator of [Ca2+]i. [Ca2+]i is the main cause of the excessive pulmonary vascular remodeling in patients with PH. In this review, it was conclued that the structure of CaSR was prone to explore the devolopment or the treatment of PH. It was found that the regulation of CaSR with some miRNA could inhibit the proliferation of PASMCs, and that CaSR could affect the occurrence of autophagy in PH. Therefore, CaSR would become a new therapeutic target to PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brennan SC, Wilkinson WJ, Tseng HE et al (2016) The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR. Sci Rep 6:21975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guo Q, Huang JA, Yamamura A et al (2014) Inhibition of the Ca(2+)-sensing receptor rescues pulmonary hypertension in rats and mice. Hypertens Res 37(2):116–124

    Article  CAS  PubMed  Google Scholar 

  3. Handoko ML, de Man FS, Allaart CP et al (2010) Perspectives on novel therapeutic strategies for right heart failure in pulmonary arterial hypertension: lessons from the left heart. Eur Respir Rev 19(115):72–82

    Article  CAS  PubMed  Google Scholar 

  4. Hoeper MM, Bogaard HJ, Condliffe R et al (2014) Pulmoner hipertansiyon tanı ve tanımlar [Definitions and diagnosis of pulmonary hypertension]. Turk Kardiyol Dern Ars 42(Suppl 1):55–66

    PubMed  Google Scholar 

  5. Hassoun PM, Mouthon L, Barberà JA et al (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54(1 Suppl):S10–S19

    Article  CAS  PubMed  Google Scholar 

  6. Yamamura A, Guo Q, Yamamura H et al (2012) Enhanced Ca(2+)-sensing receptor function in idiopathic pulmonary arterial hypertension. Circ Res 111(4):469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li MX, Jiang DQ, Wang Y et al (2016) Signal mechanisms of vascular remodeling in the development of pulmonary arterial hypertension. J Cardiovasc Pharmacol 67(2):182–190

    Article  CAS  PubMed  Google Scholar 

  8. Hendy GN, Canaff L, Cole DE (2013) The CASR gene: alternative splicing and transcriptional control, and calcium-sensing receptor (CaSR) protein: structure and ligand binding sites. Best Pract Res Clin Endocrinol Metab 27(3):285–301

    Article  CAS  PubMed  Google Scholar 

  9. Chavez-Abiega S, Mos I, Centeno PP et al (2020) Sensing extracellular calcium - an insight into the structure and function of the calcium-sensing receptor (CaSR). Adv Exp Med Biol 1131:1031–1063

    Article  CAS  PubMed  Google Scholar 

  10. Leach K, Hannan FM, Josephs TM et al (2020) International Union of Basic and Clinical Pharmacology. CVIII. Calcium-sensing receptor nomenclature, pharmacology, and function. Pharmacol Rev 72(3):558–604

    Article  CAS  PubMed  Google Scholar 

  11. Conigrave AD, Ward DT (2013) Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 27(3):315–331

    Article  CAS  PubMed  Google Scholar 

  12. Vahe C, Benomar K, Espiard S et al (2017) Diseases associated with calcium-sensing receptor. Orphanet J Rare Dis 12(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brennan SC, Thiem U, Roth S et al (2013) Calcium sensing receptor signalling in physiology and cancer. Biochim Biophys Acta 1833(7):1732–1744

    Article  CAS  PubMed  Google Scholar 

  14. Tang H, Yamamura A, Yamamura H et al (2016) Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 310(9):L846–L859

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guo Y, Yang X, He J et al (2018) Important roles of the Ca2+-sensing receptor in vascular health and disease. Life Sci 209:217–227

    Article  CAS  PubMed  Google Scholar 

  16. Schreckenberg R, Schlüter KD (2018) Calcium sensing receptor expression and signalling in cardiovascular physiology and disease [published online ahead of print, 2018 Mar 4]. Vascul Pharmacol S1537-1891(17):30323–30323

    Google Scholar 

  17. Li GW, Wang QS, Hao JH et al (2011) The functional expression of extracellular calcium-sensing receptor in rat pulmonary artery smooth muscle cells. J Biomed Sci 18(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith KA, Ayon RJ, Tang H et al (2016) Calcium-sensing receptor regulates cytosolic [Ca2+] and plays a major role in the development of pulmonary hypertension. Front Physiol 7:517

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Zhou J, Cai L et al (2012) Extracellular calcium-sensing receptor is critical in hypoxic pulmonary vasoconstriction. Antioxid Redox Signal 17(3):471–484

    Article  CAS  PubMed  Google Scholar 

  20. Peng X, Li HX, Shao HJ et al (2014) Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries. Mol Cell Biochem 396(1–2):87–98

    Article  CAS  PubMed  Google Scholar 

  21. Zhu L, Xiao R, Zhang X et al (2019) Spermine on endothelial extracellular vesicles mediates smoking-induced pulmonary hypertension partially through calcium-sensing receptor. Arterioscler Thromb Vasc Biol 39(3):482–495

    Article  CAS  PubMed  Google Scholar 

  22. Penumatsa KC, Toksoz D, Warburton RR et al (2014) Role of hypoxia-induced transglutaminase 2 in pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 307(7):L576–L585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakamura H, Zimmer J, Lim T et al (2018) Increased CaSR and TRPC6 pulmonary vascular expression in the nitrofen-induced model of congenital diaphragmatic hernia. Pediatr Surg Int 34(2):211–215

    Article  PubMed  Google Scholar 

  24. Hoeper MM, Ghofrani HA, Grünig E et al (2017) Pulmonary hypertension. Dtsch Arztebl Int 114(5):73–84

    PubMed  Google Scholar 

  25. Yamamura A, Nayeem MJ, Al Mamun A et al (2019) Platelet-derived growth factor up-regulates Ca2+-sensing receptors in idiopathic pulmonary arterial hypertension. FASEB J 33(6):7363–7374

    Article  CAS  PubMed  Google Scholar 

  26. AgarLi C, Qin F, Xue M et al (2019) miR-429 and miR-424-5p inhibit cell proliferation and Ca2+ influx by downregulating CaSR in pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 316(1):C111–C120

    Article  Google Scholar 

  27. Agarwal V, Bell GW, Nam JW et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005 Published 2015 Aug 12

    Article  PubMed Central  Google Scholar 

  28. Luo L, Hong X, Diao B et al (2018) Sulfur dioxide attenuates hypoxia-induced pulmonary arteriolar remodeling via Dkk1/Wnt signaling pathway. Biomed Pharmacother 106:692–698

    Article  CAS  PubMed  Google Scholar 

  29. Morris HE, Neves KB, Montezano AC et al (2019) Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clin Sci (Lond) 133(24):2481–2498

    Article  CAS  Google Scholar 

  30. Guo Q, Xu H, Yang X et al (2017) Notch activation of Ca2+-sensing receptor mediates hypoxia-induced pulmonary hypertension. Hypertens Res 40(2):117–129

    Article  CAS  PubMed  Google Scholar 

  31. Zeng X, Zhu L, Xiao R et al (2017) Hypoxia-induced mitogenic factor acts as a nonclassical ligand of calcium-sensing receptor, therapeutically exploitable for intermittent hypoxia-induced pulmonary hypertension. Hypertension 69(5):844–854

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Jia M, Liu M et al (2020) The effect of activated κ-opioid receptor (κ-OR) on the role of calcium sensing receptor (CaSR) in preventing hypoxic pulmonary hypertension development. Biomed Pharmacother 125:109931

    Article  CAS  PubMed  Google Scholar 

  33. Montani D, Günther S, Dorfmüller P et al (2013) Pulmonary arterial hypertension. Orphanet J Rare Dis 8:97 Published 2013 Jul 6

    Article  PubMed  PubMed Central  Google Scholar 

  34. Foshat M, Boroumand N (2017) The evolving classification of pulmonary hypertension. Arch Pathol Lab Med 141(5):696–703

    Article  CAS  PubMed  Google Scholar 

  35. Lambert M, Capuano V, Olschewski A et al (2018 Oct 14) Ion channels in pulmonary hypertension: a therapeutic interest? Int J Mol Sci 19(10):3162

    Article  PubMed Central  Google Scholar 

  36. Puri A, McGoon MD, Kushwaha SS (2007) Pulmonary arterial hypertension: current therapeutic strategies. Nat Clin Pract Cardiovasc Med 4(6):319–329

    Article  CAS  PubMed  Google Scholar 

  37. Yamamura A (2016) Molecular mechanism of dihydropyridine Ca2+ channel blockers in pulmonary hypertension. Yakugaku Zasshi 136(10):1373–1377

    Article  CAS  PubMed  Google Scholar 

  38. Yamamura A, Yamamura H, Guo Q et al (2013) Dihydropyridine Ca(2+) channel blockers increase cytosolic [Ca(2+)] by activating Ca(2+)-sensing receptors in pulmonary arterial smooth muscle cells. Circ Res 112(4):640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao R, Su Y, Feng T et al (2017) Monocrotaline Induces Endothelial Injury and Pulmonary Hypertension by Targeting the Extracellular Calcium-Sensing Receptor. J Am Heart Assoc 6(4):e004865 Published 2017 Mar 22

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamamura A, Yagi S, Ohara N et al (2016) Calcilytics enhance sildenafil-induced antiproliferation in idiopathic pulmonary arterial hypertension. Eur J Pharmacol 784:15–21

    Article  CAS  PubMed  Google Scholar 

  41. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  CAS  PubMed  Google Scholar 

  42. Goncharova EA (2013) mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB J 27(5):1796–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) [Published correction appears in autophagy]. Autophagy 12(1):1–222

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee SJ, Smith A, Guo L et al (2011) Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 183(5):649–658

    Article  CAS  PubMed  Google Scholar 

  45. Chen R, Jiang M, Li B et al (2018) The role of autophagy in pulmonary hypertension: a double-edge sword. Apoptosis 23(9–10):459–469

    Article  CAS  PubMed  Google Scholar 

  46. Long L, Yang X, Southwood M et al (2013) Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ Res 112(8):1159–1170

    Article  CAS  PubMed  Google Scholar 

  47. Peng X, Wei C, Li HZ et al (2019) NPS2390, a Selective Calcium-sensing Receptor Antagonist Controls the Phenotypic Modulation of Hypoxic Human Pulmonary Arterial Smooth Muscle Cells by Regulating Autophagy. J Transl Int Med 7(2):59–68 Published 2019 Jul 11

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu L, Wang C, Lin Y et al (2016) Suppression of calcium-sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol Med Rep 14(1):111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mattar P, Bravo-Sagua R, Tobar N et al (2018) Autophagy mediates calcium-sensing receptor-induced TNFα production in human preadipocytes. Biochim Biophys Acta Mol basis Dis 1864(11):3585–3594

    Article  CAS  PubMed  Google Scholar 

  50. Vonk Noordegraaf A, Groeneveldt JA, Bogaard HJ (2016 Mar) Pulmonary hypertension. Eur Respir Rev 25(139):4–11

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (No. 81973404, 81503058), Department of Education of Liaoning Province (No. JC2019034), Natural Science Foundation of Liaoning Province (No. 2014021065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, MY., Cheng, L., Chen, L. et al. Calcium-sensing receptor in the development and treatment of pulmonary hypertension. Mol Biol Rep 48, 975–981 (2021). https://doi.org/10.1007/s11033-020-06065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06065-3

Keywords

Navigation