Skip to main content
Log in

DNA double-strand breaks repair inhibitors potentiates the combined effect of VP-16 and CDDP in human colorectal adenocarcinoma (LoVo) cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

I. Background: A combination of etoposide (VP-16) and cisplatin (CDDP) is the standard treatment for certain colon cancers. These drugs promote the death of cancer cells via direct and indirect induction of the most lethal DNA lesions – DNA double-stand breaks. However, cancer cells can reverse the DNA damaging effect of anticancer drugs by triggering DNA repair processes. In eukaryotic cells, the main DNA repair pathway responsible for DNA double-stand breaks repair is non-homologous end-joining (NHEJ). Inhibitors of DNA repair are of special interest in cancer research as they could break the cellular resistance to DNA-damaging agents and increase the efficiency of standard cancer treatments. In this study, we investigated the effect of two NHEJ inhibitors, SCR7 and NU7441, on the cytotoxic mechanism of VP-16/CDDP in a LoVo human colorectal adenocarcinoma cell line. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding, whereas NU7441 is a highly potent and selective DNA-PK inhibitor.

II. Methods and Results: Both inhibitors synergistically increased the cytotoxicity of CDDP and VP-16 when combined, but the effect of SCR7 was more pronounced. SCR7 and NU7441 also significantly increased VP-16; CDDP induced DNA double-stand breaks level and delayed drug-induced DSB repair, as seen on the comet assay and measured using H2AX foci. We also observed changes in cell cycle distribution and enhanced apoptosis ratio in colorectal adenocarcinoma cells treated with DNA repair inhibitors and VP-16/CDDP.

III. Conclusions: Our data support the hypothesis that NHEJ inhibitors could be used in conjunction with standard therapy to provide effective clinical improvement and allow reduction in drug doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Raw data were generated at University of Lodz. Derived data supporting the findings of this study are available from the corresponding author TP on request.

References

  1. Aran V, Victorino AP, Thuler LC, Ferreira CG (2016) Colorectal Cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer 15:195–203. https://doi.org/10.1016/j.clcc.2016.02.008

    Article  PubMed  Google Scholar 

  2. Naganna SM, Vidyavathi K, Kumar HM, Bhaskaran A (2016) Histomorphological characteristics of colorectal carcinoma in the young and elderly: is there a difference? Indian J Pathol Oncol 3:293. https://doi.org/10.5958/2394-6792.2016.00056.9

    Article  Google Scholar 

  3. Pestana JSG, Martins SFF (2016) Colorectal cancer: comparative analysis of clinical and pathological characteristics in patients aged above and below 45 years of age and impact on prognosis. J Coloproctology 36:196–202. https://doi.org/10.1016/j.jcol.2016.04.010

    Article  Google Scholar 

  4. Holch J, Stintzing S, Heinemann V (2016) Treatment of metastatic colorectal Cancer: standard of care and future perspectives. Visc Med 32:178–183. https://doi.org/10.1159/000446052

    Article  PubMed  PubMed Central  Google Scholar 

  5. Souglakos J (2007) Genetic alterations in sporadic and hereditary colorectal Cancer: implementations for screening and follow-up. Dig Dis 25:9–19. https://doi.org/10.1159/000099166

    Article  PubMed  Google Scholar 

  6. Lieber MR (2010) The mechanism of double-Strand DNA break repair by the nonhomologous DNA end joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang F, Han M, Romanienko PJ, Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci 95:5172–5177

    Article  CAS  Google Scholar 

  8. Kelley MR, Logsdon D, Fishel ML (2014) Targeting DNA repair pathways for cancer treatment: what’s new? Future Oncol 10:1215–1237. https://doi.org/10.2217/fon.14.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kopa P, Macieja A, Galita G et al (2019) DNA double Strand breaks repair inhibitors: relevance as potential new anticancer therapeutics. Curr Med Chem 26:1483–1493. https://doi.org/10.2174/0929867325666180214113154

    Article  CAS  PubMed  Google Scholar 

  10. Kopa P, Macieja A, Gulbas I et al (2020) Inhibition of DNA-PK potentiates the synergistic effect of NK314 and etoposide combination on human glioblastoma cells. Mol Biol Rep 47:67–76. https://doi.org/10.1007/s11033-019-05105-x

    Article  CAS  PubMed  Google Scholar 

  11. Macieja A, Kopa P, Galita G et al (2019) Comparison of the effect of three different topoisomerase II inhibitors combined with cisplatin in human glioblastoma cells sensitized with double strand break repair inhibitors. Mol Biol Rep 46:3625–3636. https://doi.org/10.1007/s11033-019-04605-0

    Article  CAS  PubMed  Google Scholar 

  12. Pastwa E, Poplawski T, Lewandowska U et al (2014) Wortmannin potentiates the combined effect of etoposide and cisplatin in human glioma cells. Int J Biochem Cell Biol 53:423–431. https://doi.org/10.1016/j.biocel.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  13. Zoppoli G, Regairaz M, Leo E et al (2012) Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci U S A 109:15030–15035. https://doi.org/10.1073/pnas.1205943109

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carrillo AM, Hicks M, Khabele D, Eischen CM (2015) Pharmacologically increasing Mdm2 inhibits DNA repair and cooperates with genotoxic agents to kill p53-inactivated ovarian Cancer cells. Mol Cancer Res MCR 13:1197–1205. https://doi.org/10.1158/1541-7786.MCR-15-0089

    Article  CAS  PubMed  Google Scholar 

  15. Pujol J-L, Roch B, Pujol CN, Goze C (2018) Medical treatment of small cell lung cancer: can we leave the area of cisplatin-etoposide? Bull Cancer (Paris) 105:955–966. https://doi.org/10.1016/j.bulcan.2018.05.014

    Article  Google Scholar 

  16. Gkotzamanidou M, Terpos E, Bamia C et al (2016) DNA repair of myeloma plasma cells correlates with clinical outcome: the effect of the nonhomologous end-joining inhibitor SCR7. Blood 128:1214–1225. https://doi.org/10.1182/blood-2016-01-691618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dong J, Dong J, Ren Y et al (2018) Inactivation of DNA-PK by knockdown DNA-PKcs or NU7441 impairs non-homologous end-joining of radiation-induced double strand break repair. Oncol Rep 39:912–920

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mundade R, Imperiale TF, Prabhu L et al (2014) Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience 1:400–406

    Article  Google Scholar 

  19. Ahmed D, Eide PW, Eilertsen IA et al (2013) Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2:e71. https://doi.org/10.1038/oncsis.2013.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mouradov D, Sloggett C, Jorissen RN et al (2014) Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res 74:3238–3247. https://doi.org/10.1158/0008-5472.CAN-14-0013

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Mouradov D, Wang X et al (2017) Colorectal Cancer cell line proteomes are representative of primary tumors and predict drug sensitivity. Gastroenterology 153:1082–1095. https://doi.org/10.1053/j.gastro.2017.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chou T-C (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947

    Article  CAS  PubMed  Google Scholar 

  23. Wozniak K, Szaflik JP, Zaras M et al (2009) DNA damage/repair and polymorphism of the hOGG1 gene in lymphocytes of AMD patients. J Biomed Biotechnol 2009:827562. https://doi.org/10.1155/2009/827562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Y, Thomas HD, Batey MA et al (2006) Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 66:5354–5362

    Article  CAS  Google Scholar 

  25. Hsu F-M, Zhang S, Chen BPC (2012) Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment. Transl Cancer Res 1:22–34. https://doi.org/10.3978/j.issn.2218-676X.2012.04.01

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rapp A (2004) After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available. J Cell Sci 117:4935–4945. https://doi.org/10.1242/jcs.01355

    Article  CAS  PubMed  Google Scholar 

  27. Alikarami F, Safa M, Faranoush M et al (2017) Inhibition of DNA-PK enhances chemosensitivity of B-cell precursor acute lymphoblastic leukemia cells to doxorubicin. Biomed Pharmacother 94:1077–1093. https://doi.org/10.1016/j.biopha.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  28. Dai Y, Jin S, Li X, Wang D (2017) The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer. Oncotarget 8:1354–1368. https://doi.org/10.18632/oncotarget.13817

    Article  PubMed  Google Scholar 

  29. Srivastava M, Nambiar M, Sharma S et al (2012) An inhibitor of nonhomologous end-joining abrogates double-Strand break repair and impedes Cancer progression. Cell 151:1474–1487. https://doi.org/10.1016/j.cell.2012.11.054

    Article  CAS  Google Scholar 

  30. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    Article  CAS  Google Scholar 

  31. Eastman A (1999) The mechanism of action of cisplatin: from adducts to apoptosis. Cisplatin Chem Biochem Lead Anticancer Drug:111–134

  32. Yanai M, Makino H, Ping B et al (2017) DNA-PK inhibition by NU7441 enhances Chemosensitivity to topoisomerase inhibitor in non-small cell lung carcinoma cells by blocking DNA damage repair. Yonago Acta Med 60:9–15

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McCormick A, Donoghue P, Dixon M et al (2017) Ovarian Cancers Harbor defects in nonhomologous end joining resulting in resistance to Rucaparib. Clin Cancer Res Off J Am Assoc Cancer Res 23:2050–2060. https://doi.org/10.1158/1078-0432.CCR-16-0564

    Article  CAS  Google Scholar 

  34. Sunada S, Kanai H, Lee Y et al (2016) Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair. Cancer Sci 107:1250–1255. https://doi.org/10.1111/cas.12998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu L, Shang Z-F, Hsu F-M et al (2015) NSCLC cells demonstrate differential mode of cell death in response to the combined treatment of radiation and a DNA-PKcs inhibitor. Oncotarget 6:3848–3860. https://doi.org/10.18632/oncotarget.2975

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang C, Wang Q, Liu X et al (2016) NU7441 enhances the Radiosensitivity of liver Cancer cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 38:1897–1905. https://doi.org/10.1159/000445551

    Article  CAS  Google Scholar 

  37. van Oorschot B, Granata G, Di Franco S et al (2016) Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget 7:65504–65513. https://doi.org/10.18632/oncotarget.11798

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vávrová J, Zárybnická L, Jošt P et al (2016) Comparison of the Radiosensitizing effect of ATR, ATM and DNA-PK kinase inhibitors on cervical carcinoma cells. Folia Biol (Praha) 62:167–174

    Google Scholar 

  39. Azad A, Bukczynska P, Jackson S et al (2014) Co-targeting deoxyribonucleic acid-dependent protein kinase and poly(adenosine diphosphate-ribose) polymerase-1 promotes accelerated senescence of irradiated cancer cells. Int J Radiat Oncol Biol Phys 88:385–394. https://doi.org/10.1016/j.ijrobp.2013.10.043

    Article  CAS  PubMed  Google Scholar 

  40. Greco GE, Matsumoto Y, Brooks RC et al (2016) SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair 43:18–23. https://doi.org/10.1016/j.dnarep.2016.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. John F, George J, Srivastava M et al (2015) Pluronic copolymer encapsulated SCR7 as a potential anticancer agent. Faraday Discuss 177:155–161. https://doi.org/10.1039/C4FD00176A

    Article  CAS  PubMed  Google Scholar 

  42. John F, George J, Vartak SV et al (2015) Enhanced efficacy of pluronic copolymer micelle encapsulated SCR7 against cancer cell proliferation. Macromol Biosci 15:521–534. https://doi.org/10.1002/mabi.201400480

    Article  CAS  PubMed  Google Scholar 

  43. Mouradov D, Slogget C, Jorissen RN et al (2014) Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res 74(12):3238–3247. https://doi.org/10.1158/0008-5472.CAN-14-0013

    Article  CAS  PubMed  Google Scholar 

  44. Ahmed D, Eide PW, Eilertsen IA et al (2013) Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2(9):e71. https://doi.org/10.1038/oncsis.2013.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Centre (NCN, Poland) grant, according to the decision No. DEC-2013/11/B/NZ7/01340.

Funding

This work was financially supported by the National Science Center (NCN, Poland) grant, according to the decision No. DEC-2013/11/B/NZ7/01340.

Author information

Authors and Affiliations

Authors

Contributions

PK performed the experiments, analyzed the data, interpreted the results and wrote the manuscript; AM participated in the laboratory work, interpreting results and wrote the manuscript; EP and IM participated in the design of the study, critically reviewed the manuscript; TP supervised overall study, analyzed data, and critically reviewed manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tomasz Poplawski.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopa, P., Macieja, A., Pastwa, E. et al. DNA double-strand breaks repair inhibitors potentiates the combined effect of VP-16 and CDDP in human colorectal adenocarcinoma (LoVo) cells. Mol Biol Rep 48, 709–720 (2021). https://doi.org/10.1007/s11033-020-06124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06124-9

Keywords

Navigation