Skip to main content
Log in

Methylxanthine Inhibit Fungal Chitinases and Exhibit Antifungal Activity

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Chitinases are necessary for fungal cell wall remodeling and cell replication. Methylxanthines have been shown to competitively inhibit family 18 chitinases in vitro. We sought to determine the effects of methylxanthines on fungal chitinases. Fungi demonstrated variable chitinase activity and incubation with methylxanthines (0.5–10 mM) resulted in a dose-dependent decrease in this activity. All fungi tested, except for Candida spp., demonstrated growth inhibition in the presence of methylxanthines at a concentration of 10 mM. India ink staining demonstrated impaired budding and decreased cell size for methylxanthine-treated Cryptococcus neoformans. C. neoformans and Aspergillus fumigatus treated with pentoxifylline also exhibited abnormal cell morphology. In addition, pentoxifylline-treated C. neoformans exhibited increased susceptibility to calcofluor and a leaky melanin phenotype consistent with defective cell wall function. Our data suggest that a variety of fungi express chitinases and that methylxanthines have antifungal properties related to their inhibition of fungal chitinases. Our results highlight the potential utility of targeting chitinases in the development of novel antifungal therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baker LG, Specht CA, Donlin MJ, Lodge JK. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell. 2007;6(5):855–67.

    Article  PubMed  CAS  Google Scholar 

  2. Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK. A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell. 2005;4(11):1902–12.

    Article  PubMed  CAS  Google Scholar 

  3. Duo-Chuan L. Review of fungal chitinases. Mycopathologia. 2006;161(6):345–60.

    Article  PubMed  Google Scholar 

  4. Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276(9):6770–8.

    Article  PubMed  CAS  Google Scholar 

  5. van Eijk M, van Roomen CP, Renkema GH, Bussink AP, Andrews L, Blommaart EF, et al. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol. 2005;17(11):1505–12.

    Article  PubMed  Google Scholar 

  6. Elias JA, Homer RJ, Hamid Q, Lee CG. Chitinases and chitinase-like proteins in T(H)2 inflammation and asthma. J Allergy Clin Immunol. 2005;116(3):497–500.

    Article  PubMed  CAS  Google Scholar 

  7. Chupp GL, Lee CG, Jarjour N, Shim YM, Holm CT, He S, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007;357(20):2016–27.

    Article  PubMed  CAS  Google Scholar 

  8. Windmeier C, Gressner AM. Pharmacological aspects of pentoxifylline with emphasis on its inhibitory actions on hepatic fibrogenesis. Gen Pharmacol. 1997;29(2):181–96.

    Article  PubMed  CAS  Google Scholar 

  9. Meskini N, Nemoz G, Okyayuz-Baklouti I, Lagarde M, Prigent AF. Phosphodiesterase inhibitory profile of some related xanthine derivatives pharmacologically active on the peripheral microcirculation. Biochem Pharmacol. 1994;47(5):781–8.

    Article  PubMed  CAS  Google Scholar 

  10. Fredholm BB, Persson CG. Xanthine derivatives as adenosine receptor antagonists. Eur J Pharmacol. 1982;81(4):673–6.

    Article  PubMed  CAS  Google Scholar 

  11. Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, et al. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci USA. 2002;99(13):8921–6.

    Article  PubMed  CAS  Google Scholar 

  12. Rao FV, Andersen OA, Vora KA, Demartino JA, van Aalten DM. Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes. Chem Biol. 2005;12(9):973–80.

    Article  PubMed  CAS  Google Scholar 

  13. Hurtado-Guerrero R, van Aalten DM. Structure of Saccharomyces cerevisiae chitinase 1 and screening-based discovery of potent inhibitors. Chem Biol. 2007;14(5):589–99.

    Article  PubMed  CAS  Google Scholar 

  14. Goldman DL, Khine H, Abadi J, Lindenberg DJ, Pirofski L, Niang R, et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics. 2001;107(5):E66.

    Article  PubMed  CAS  Google Scholar 

  15. Barratt RW, Johnson GB, Ogata WN. Wild-type and mutant stocks of Aspergillus nidulans. Genetics. 1965;52(1):233–46.

    PubMed  CAS  Google Scholar 

  16. Vicencio AG, Narain S, Du Z, Zeng WY, Ritch J, Casadevall A et al. Pulmonary cryptococcosis induces chitinase in the rat. Respir Res. 2008;9:40.

    Google Scholar 

  17. Goldman DL, Zeng W, Rivera J, Nakouzzi A, Casadevall A. Human serum contains a protease that protects against cytotoxic activity of Bacillus anthracis lethal toxin in vitro. Clin Vaccine Immunol. 2008;15(6):970–3.

    Article  PubMed  CAS  Google Scholar 

  18. Fonseca FL, Nimrichter L, Cordero RJ, Frases S, De Siqueira JR, Goldman DL et al. A role for chitin and chitooligomers in the capsular architecture of Cryptococcus neoformans. Eukaryot Cell. 2009.

  19. Fuchs BB, Tegos GP, Hamblin MR, Mylonakis E. Susceptibility of Cryptococcus neoformans to photodynamic inactivation is associated with cell wall integrity. Antimicrob Agents Chemother. 2007;51(8):2929–36.

    Article  PubMed  CAS  Google Scholar 

  20. Wang Y, Aisen P, Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun. 1995;63(8):3131–6.

    PubMed  CAS  Google Scholar 

  21. Sakuda S, Nishimoto Y, Ohi M, Watanabe M, Takayama S, Isogai A, Yamada Y. Effects of demethylallosamidin, a potent yeast chitinase inhibitor, on the cell division of yeast. Agricultural Biological Chemistry. 1990;54(5):1333–5.

    Article  CAS  Google Scholar 

  22. Kuranda MJ, Robbins PW. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem. 1991;266(29):19758–67.

    PubMed  CAS  Google Scholar 

  23. McCreath KJ, Specht CA, Robbins PW. Molecular cloning and characterization of chitinase genes from Candida albicans. Proc Natl Acad Sci USA. 1995;92(7):2544–8.

    Article  PubMed  CAS  Google Scholar 

  24. Dunkler A, Walther A, Specht CA, Wendland J. Candida albicans CHT3 encodes the functional homolog of the Cts1 chitinase of Saccharomyces cerevisiae. Fungal Genet Biol. 2005;42(11):935–47.

    Article  PubMed  Google Scholar 

  25. Baker LG, Specht CA, Lodge JK. Chitinases are essential for sexual development but not vegetative growth in Cryptococcus neoformans. Eukaryot Cell. 2009;8(11):1692–705.

    Article  PubMed  CAS  Google Scholar 

  26. Alcazar-Fuoli L, Clavaud C, Lamarre C, Aimanianda V, Seidl-Seiboth V, Mellado E et al. Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genet Biol. 48(4):418–29.

  27. Taib M, Pinney JW, Westhead DR, McDowall KJ, Adams DJ. Differential expression and extent of fungal/plant and fungal/bacterial chitinases of Aspergillus fumigatus. Arch Microbiol. 2005;184(1):78–81.

    Article  PubMed  CAS  Google Scholar 

  28. McFadden D, Zaragoza O, Casadevall A. The capsular dynamics of Cryptococcus neoformans. Trends Microbiol. 2006;14(11):497–505.

    Article  PubMed  CAS  Google Scholar 

  29. Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A. The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol. 2009;68:133–216.

    Article  PubMed  CAS  Google Scholar 

  30. Miller K, Louie A, Baltch AL, Smith RP, Davis PJ, Gordon MA. Pharmacokinetics of pentoxifylline and its metabolites in healthy mice and in mice infected with Candida albicans. Antimicrob Agents Chemother. 1998;42(9):2405–9.

    PubMed  CAS  Google Scholar 

  31. Louie A, Baltch AL, Franke MA, Smith RP, Gordon MA. Comparative capacity of four antifungal agents to stimulate murine macrophages to produce tumour necrosis factor alpha: an effect that is attenuated by pentoxifylline, liposomal vesicles, and dexamethasone. J Antimicrob Chemother. 1994;34(6):975–87.

    Article  PubMed  CAS  Google Scholar 

  32. Fischer W, Schudt C, Wendel A. Protection by phosphodiesterase inhibitors against endotoxin-induced liver injury in galactosamine-sensitized mice. Biochem Pharmacol. 1993;45(12):2399–404.

    Article  PubMed  CAS  Google Scholar 

  33. Jilg S, Barsig J, Leist M, Kusters S, Volk HD, Wendel A. Enhanced release of interleukin-10 and soluble tumor necrosis factor receptors as novel principles of methylxanthine action in murine models of endotoxic shock. J Pharmacol Exp Ther. 1996;278(1):421–31.

    PubMed  CAS  Google Scholar 

  34. Bauman SK, Huffnagle GB, Murphy JW. Effects of tumor necrosis factor alpha on dendritic cell accumulation in lymph nodes draining the immunization site and the impact on the anticryptococcal cell-mediated immune response. Infect Immun. 2003;71(1):68–74.

    Article  PubMed  CAS  Google Scholar 

  35. Hage CA, Wood KL, Winer-Muram HT, Wilson SJ, Sarosi G, Knox KS. Pulmonary cryptococcosis after initiation of anti-tumor necrosis factor-alpha therapy. Chest. 2003;124(6):2395–7.

    Article  PubMed  Google Scholar 

  36. Wood KL, Hage CA, Knox KS, Kleiman MB, Sannuti A, Day RB, et al. Histoplasmosis after treatment with anti-tumor necrosis factor-alpha therapy. Am J Respir Crit Care Med. 2003;167(9):1279–82.

    Article  PubMed  Google Scholar 

  37. Fei M, Bhatia S, Oriss TB, Yarlagadda M, Khare A, Akira S et al. TNF-{alpha} from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection. Proc Natl Acad Sci USA. 108(13):5360–5.

  38. Marino MW, Dunn A, Grail D, Inglese M, Noguchi Y, Richards E, et al. Characterization of tumor necrosis factor-deficient mice. Proc Natl Acad Sci USA. 1997;94(15):8093–8.

    Article  PubMed  CAS  Google Scholar 

  39. Tsirilakis K, Du Z, Rivera J, Vicencio AG, Goldman DL. C. neoformans induces chitinase activity and expression in the mouse. Am J Respir Crit Care Med. 2010;181:A5653.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Andre Nicola for his assistance with microscopy studies. Arturo Casadevall is supported by NIH grants AI033142, AI033774, AI052733, and HL059842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsirilakis, K., Kim, C., Vicencio, A.G. et al. Methylxanthine Inhibit Fungal Chitinases and Exhibit Antifungal Activity. Mycopathologia 173, 83–91 (2012). https://doi.org/10.1007/s11046-011-9483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-011-9483-x

Keywords

Navigation