Skip to main content

Advertisement

Log in

Baicalein-Induced Apoptosis via Endoplasmic Reticulum Stress Through Elevations of Reactive Oxygen Species and Mitochondria Dependent Pathway in Mouse–Rat Hybrid Retina Ganglion Cells (N18)

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Studies were designed to investigate the effects of baicalein on mouse–rat hybrid retina ganglion cells (N18) to better understand its effect on apoptosis and apoptosis-related genes in vitro. Cell viability, reactive oxygen species (ROS), cytoplasmic Ca2+, mitochondrial membrane potential (MMP), apoptosis induction, and caspases-3 activity were examined by flow cytometric assay. Apoptosis-associated proteins such as p53, Bax, Bcl-2, cytochrome c, and caspase-3 were examined by Western blot. We demonstrated the increase in the levels of p53, Bax, and cytochrome c and decrease in the level of Bcl-2, which are associated with the induction of apoptotic cell death after 24 h treatment with baicalein in N18 cells. Baicalein induced an increase in the cytoplasmic levels of ROS and Ca2+ in 1 h and reached their peak at 3 h, and thereafter a loss of MMP by flow cytometry. We also demonstrated a release of the cytochrome c from mitochondria into cytosol and an activation of caspase-3, which led to the occurrence of apoptosis in N18 cells treated with baicalein by Western blot. Pretreatment was conducted with BAPTA (intracellular calcium chelator) in baicalein-treated cells, the decline of MMP was recovered, and the increase in the level of cytoplasmic Ca2+ was suppressed, and the proportion of apoptosis was also markedly diminished. In conclusion, our data suggests that oxidative stress and cellular Ca2+ modulates the baicalein-induced cell death via a Ca2+-dependent mitochondrial death pathway in N18 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Middleton E Jr (1988) Some biological properties of plant flavonoids. Ann Allergy 61:53–57

    PubMed  CAS  Google Scholar 

  2. Kim YO, Leem K, Park J, Lee P, Ahn DK, Lee BC et al (2001) Cytoprotective effect of Scutellaria baicalensis in CA1 hippocampal neurons of rats after global cerebral ischemia. J Ethnopharmacol 77:183–188. doi:10.1016/S0378-8741(01)00283-5

    Article  PubMed  CAS  Google Scholar 

  3. Hong T, Jin GB, Cho S, Cyong JC (2002) Evaluation of the anti-inflammatory effect of baicalein on dextran sulfate sodium-induced colitis in mice. Planta Med 68:268–271. doi:10.1055/s-2002-23143

    Article  PubMed  CAS  Google Scholar 

  4. Hamada H, Hiramatsu M, Edamatsu R, Mori A (1993) Free radical scavenging action of baicalein. Arch Biochem Biophys 306:261–266. doi:10.1006/abbi.1993.1509

    Article  PubMed  CAS  Google Scholar 

  5. Gao Z, Huang K, Yang X, Xu H (1999) Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 147:2643–2650

    Google Scholar 

  6. Shieh DE, Liu LT, Lin CC (2000) Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 20:2861–2865

    PubMed  CAS  Google Scholar 

  7. Gao Z, Huang K, Xu H (2001) Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacol Res 43:173–178. doi:10.1006/phrs.2000.0761

    Article  PubMed  CAS  Google Scholar 

  8. Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446. doi:10.1016/S0891-5849(00)00498-6

    Article  PubMed  CAS  Google Scholar 

  9. Lebeau A, Esclaire F, Rostene W, Pelaprat D (2001) Baicalein protects cortical neurons from beta-amyloid (25–35) induced toxicity. NeuroReport 12:2199–2202. doi:10.1097/00001756-200107200-00031

    Article  PubMed  CAS  Google Scholar 

  10. Choi J, Conrad CC, Malakowsky CA, Talent JM, Yuan CS, Gracy RW (2002) Flavones from Scutellaria baicalensis Georgi attenuate apoptosis and protein oxidation in neuronal cell lines. Biochim Biophys Acta 1571:201–210

    PubMed  CAS  Google Scholar 

  11. Chen ZY, Su YL, Bi YR, Tsang SY, Huang Y (2000) Effect of baicalein and acetone extract of Scutellaria baicalensis on canola oil oxidation. J Am Oil Chem Soc 77:73–78. doi:10.1007/s11746-000-0011-y

    Article  CAS  Google Scholar 

  12. Lin CC, Shieh DE (1996) The anti-inflammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin. Am J Chin Med 24(1):31–36

    Article  PubMed  CAS  Google Scholar 

  13. Nakahata N, Kutsuwa M, Kyo R, Kubo M, Hayashi K, Ohizumi Y (1999) Analysis of inhibitory effects of scutellariae radix and baicalein on prostaglandin E2 production in rat C6 glioma cells. Am J Chin Med 26(3–4):311–323

    Google Scholar 

  14. Ueng YF, Shyu CC, Liu TY, Oda Y, Lin YL, Liao JF et al (2001) Protective effects of baicalein and wogonin against benzo[a]pyrene- and aflatoxin B(1)-induced genotoxicities. Biochem Pharmacol 62:1653–1660. doi:10.1016/S0006-2952(01)00816-4

    Article  PubMed  CAS  Google Scholar 

  15. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495. doi:10.1093/carcin/21.3.485

    Article  PubMed  CAS  Google Scholar 

  16. Gross A, McDonnell JM, Korsmeyer SJ (1999) Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911. doi:10.1101/gad.13.15.1899

    Article  PubMed  CAS  Google Scholar 

  17. Reed JC (1998) Bcl-2 family proteins. Oncogene 17:3225–3236. doi:10.1038/sj.onc.1202591

    Article  PubMed  Google Scholar 

  18. Debatin K (2000) Activation of apoptosis pathways by anticancer treatment. Toxicol Lett 112–113:41–48. doi:10.1016/S0378-4274(99)00252-0

    Article  PubMed  Google Scholar 

  19. Woynarowska BA, Woynarowska JM (2002) Preferential targeting of apoptosis in tumor versus normal cells. Biochim Biophys Acta 1587:309–317

    PubMed  CAS  Google Scholar 

  20. Lin HL, Yang JS, Yang JH, Fan SS, Chang WC, Li YC et al (2006) The role of Ca(2+) on the DADS-induced apoptosis in mouse-rat hybrid retina ganglion cells (N18). Neurochem Res 31:383–393. doi:10.1007/s11064-005-9035-1

    Article  PubMed  CAS  Google Scholar 

  21. Yang JH, Hsia TC, Kuo HM, Chao PD, Chou CC, Wei YH et al (2006) Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos 34:296–304. doi:10.1124/dmd.105.005280

    Article  PubMed  CAS  Google Scholar 

  22. Kim HR, Kim EJ, Yang SH, Jeong ET, Park C, Lee JH et al (2006) Trichostatin A induces apoptosis in lung cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway. Exp Mol Med 36:616–624

    Google Scholar 

  23. Hsu MH, Chen CJ, Kuo SC, Chung JG, Lai YY, Teng CM et al (2007) 2-(3-Fluorophenyl)-6-methoxyl-4-oxo-1, 4-dihydroquinoline-3-carboxylic acid (YJC-1) induces mitotic phase arrest in A549 cells. Eur J Pharmacol 559:14–20. doi:10.1016/j.ejphar.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  24. Lin SY, Jang JH, Surh YJ (2003) Induction of cyclooxygenase-2 and peroxisome proliferators-activated receptor-gamma during nitric oxide-induced apoptotic PC12 cell death. Ann NY Acad Sci 1010:648–658. doi:10.1196/annals.1299.119

    Article  Google Scholar 

  25. Kluza J, Clark AM, Bailly C (2003) Apoptosis induced by the alkaloid sampangine in HL-60 leukemia cells: correlation between the effects on the cell cycle progression and changes of mitochondrial potential. Ann NY Acad Sci 1010:331–334. doi:10.1196/annals.1299.059

    Article  PubMed  CAS  Google Scholar 

  26. Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD (2000) Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res 46:24–27. doi:10.1016/S0008-6363(00)00002-X

    Article  Google Scholar 

  27. Isenberg JS, Klaunig JE (2000) Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci 53:340–351. doi:10.1093/toxsci/53.2.340

    Article  PubMed  CAS  Google Scholar 

  28. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    PubMed  CAS  Google Scholar 

  29. Zang G, Gurtu V, Kain SR, Yan G (1997) Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23:525–531

    Google Scholar 

  30. Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 9:691–704. doi:10.1023/B:APPT.0000045786.98031.1d

    Article  PubMed  CAS  Google Scholar 

  31. Ozgen U, Savasan S, Buck S, Ravindranath Y (2000) Comparison of DiOC6 uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children. Cytometry 42:74–78. doi:10.1002/(SICI)1097-0320(20000215)42:1<74::AID-CYTO11>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  32. Tong W, Ding X, Adrian T (2002) The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem Biophys Res 296:942–948. doi:10.1016/S0006-291X(02)02014-4

    Article  CAS  Google Scholar 

  33. Chang WH, Chen CH, Gau RJ, Lin CC, Tsai CL, Tsai K et al (2002) Effect of baicalein on apoptosis of the human Hep G2 cell line was induced by mitochondrial dysfunction. Planta Med 68:302–306. doi:10.1055/s-2002-26760

    Article  PubMed  CAS  Google Scholar 

  34. Pidgeon GP, Kandouz M, Meram A, Honn KV (2002) Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res 62:2721–2727

    PubMed  CAS  Google Scholar 

  35. Wong BC, Wang WP, Cho CH, Fan XM, Lin MC, Kung HF et al (2001) 12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells. Carcinogenesis 22:1349–1354. doi:10.1093/carcin/22.9.1349

    Article  PubMed  CAS  Google Scholar 

  36. Esposti MD, Hatzinisiriou I, McLennan H, Ralph S (1999) Bcl-2 and mitochondrial oxygen radicals. New approaches with reactive oxygen species-sensitive probes. J Biol Chem 274:29831–29837. doi:10.1074/jbc.274.42.29831

    Article  PubMed  CAS  Google Scholar 

  37. Li Y, Maher P, Schubert D (1997) Requirement for cGMP in nerve cell death caused by glutathione depletion. J Cell Biol 139:1317–1324. doi:10.1083/jcb.139.5.1317

    Article  PubMed  CAS  Google Scholar 

  38. Li Y, Maher P, Schubert DA (1997) Role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463. doi:10.1016/S0896-6273(00)80953-8

    Article  PubMed  CAS  Google Scholar 

  39. Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446. doi:10.1016/S0891-5849(00)00498-6

    Article  PubMed  CAS  Google Scholar 

  40. Wang J, Yu Y, Hashimoto F, Sakata Y, Fujii M, Hou DX (2004) Baicalein induces apoptosis through ROS-mediated mitochondrial dysfunction pathway in HL-60 cells. Int J Mol Med 14:627–632

    PubMed  Google Scholar 

  41. Tsai WY, Chang WH, Chen CH, Lu FJ (2000) Enhancing effect of patented whey protein isolate (Immunocal) on cytotoxicity of an anticancer drug. Nutr Cancer 38:200–208. doi:10.1207/S15327914NC382_9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Gung Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YC., Lin, HJ., Yang, JH. et al. Baicalein-Induced Apoptosis via Endoplasmic Reticulum Stress Through Elevations of Reactive Oxygen Species and Mitochondria Dependent Pathway in Mouse–Rat Hybrid Retina Ganglion Cells (N18). Neurochem Res 34, 418–429 (2009). https://doi.org/10.1007/s11064-008-9799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9799-1

Keywords

Navigation