Skip to main content
Log in

The neuroprotective effect of propofol against brain ischemia mediated by the glutamatergic signaling pathway in rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Several mechanisms are involved in the neuroprotection of propofol against ischemia, but influences of propofol on the binding properties of glutamate receptors and the uptake of glutamate in brain ischemia are not known. The present study was undertaken to investigate these issues in rat global brain ischemic model using methods of neuropathological evaluation, radioligand binding assay with and uptake test for L-3H-glutamate. It was shown that propofol used in anesthetic doses protected pyramidal neurons in the hippocampal CA1 subfield against delayed neuronal death normally induced by global brain ischemia. Simultaneously, the propofol decreased the value of maximal number of binding sites (Bmax), increased the value of equilibrium dissociation constant (Kd), and increased the glutamate uptake in the CA1 subfield. These findings indicate that it is, at least partly, via modulating the binding properties of glutamate receptors and the uptake of glutamate that propofol protects neurons against ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sitar SM, Hanifi Moghaddam P, Gelb A et al (1999) Propofol prevents peroxide-induced inhibition of glutamate transport in cultured astrocytes. Anesthesiology 90:1446–1453

    Article  PubMed  CAS  Google Scholar 

  2. Peters CE, Korcok J, Gelb AW et al (2001) Anesthetic concentrations of propofol protect against oxidative stress in primary astrocyte cultures: comparison with hypothermia. Anesthesiology 94:313–321

    Article  PubMed  CAS  Google Scholar 

  3. Daskalopoulos R, Korcok J, Farhangkhgoee P et al (2001) Propofol protection of sodium-hydrogen exchange activity sustains glutamate uptake during oxidative stress. Anesth Analg 93:1199–1204

    Article  PubMed  CAS  Google Scholar 

  4. Velly LJ, Guillet BA, Masmejean FM et al (2003) Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters. Anesthesiology 99:368–375

    Article  PubMed  CAS  Google Scholar 

  5. Wang J, Yang X, Camporesi CV et al (2002) Propofol reduces infarct size and striatal dopamine accumulation following transient middle cerebral artery occlusion: a microdialysis study. Eur J Pharmacol 452:303–308

    Article  PubMed  CAS  Google Scholar 

  6. Bayona NA, Gelb AW, Jiang Z et al (2004) Propofol neuroprotection in cerebral ischemia and its effects on low-molecular-weight antioxidants and skilled motor tasks. Anesthesiology 100:1151–1159

    Article  PubMed  CAS  Google Scholar 

  7. Gelb AW, Bayona NA, Wilson JX et al (2002) Propofol anesthesia compared to awake reduces infarct size in rats. Anesthesiology 96:1183–1190

    Article  PubMed  CAS  Google Scholar 

  8. Adembri C, Venturi L, Tani A et al (2006) Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology 104:80–89

    Article  PubMed  CAS  Google Scholar 

  9. Ergün R, Akdemir G, Sen S et al (2002) Neuroprotective effects of propofol following global cerebral ischemia in rats. Neurosurg Rev 25:95–98

    Article  PubMed  Google Scholar 

  10. Ito H, Watanabe Y, Isshiki A et al (1999) Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand 43:153–162

    Article  PubMed  CAS  Google Scholar 

  11. Yano T, Nakayama R, Ushijima K (2000) Intracerebroventricular propofol is neuroprotective against transient global ischemia in rats: extracellular glutamate level is not a major determinant. Brain Res 883:69–76

    Article  PubMed  CAS  Google Scholar 

  12. Orser BA, Wang LY, Pennefather PS et al (1994) Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci 14:7747–7760

    PubMed  CAS  Google Scholar 

  13. Lingamaneni R, Hemmings HC Jr (2003) Differential interaction of anaesthetics and antiepileptic drugs with neuronal Na + channels, Ca2 + channels, and GABA(A) receptors. Br J Anaesth 90:199–211

    Article  PubMed  CAS  Google Scholar 

  14. Benveniste H, Jørgensen MB, Diemer NH et al (1988) Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand 78:529–536

    Article  PubMed  CAS  Google Scholar 

  15. Shinohara Y, Yamamoto M, Haida M et al (1990) Effect of glutamate and its antagonist on shift of water from extra- to intracellular space after cerebral ischaemia. Acta Neurochir Suppl (Wien) 51:198–200

    CAS  Google Scholar 

  16. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129

    Article  PubMed  CAS  Google Scholar 

  17. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

  18. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    Article  PubMed  CAS  Google Scholar 

  19. Kitagawa K, Matsumoto M, Tagaya M et al (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24

    Article  PubMed  CAS  Google Scholar 

  20. Kato H, Liu Y, Araki T et al (1991) Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: cumulative damage and protective effects. Brain Res 553:238–242

    Article  PubMed  CAS  Google Scholar 

  21. Meeker RB, Greenwood RS, Hayward JN (1994) Glutamate receptors in the rat hypothalamus and pituitary. Endocrinology 134:621–629

    Article  PubMed  CAS  Google Scholar 

  22. Vesce S, Bezzi P, Rossi D et al (1997) HIV-1 gp120 glycoprotein astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid. FEBS lett 411:107–109

    Article  PubMed  CAS  Google Scholar 

  23. Tasca CI, Santos TG, Tavares RG et al (2004) Guanine derivatives modulate 1- glutamate uptake into rat brain synaptic vesicles. Neurochem Int 44:423–431

    Article  PubMed  CAS  Google Scholar 

  24. dos Santos AQ, Nardin P, Funchal C et al (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167

    Article  PubMed  Google Scholar 

  25. Sakai T, Yoshitoshi T, Nagai Y et al (2006) Increased glutamate uptake and GLAST expression by cyclic AMP in retinal glial cells. Graefes Arch Clin Exp Ophthalmol 244:359–363

    Article  PubMed  CAS  Google Scholar 

  26. Moretto MB, Thomazi AP, Godinho G et al (2007) Ebselen and dilrg- anyl chalcogenides decrease in vitro glutamate uptake by rat brain slices: Prevention by DTT and GSH. Toxicol In Vitro 21:639–645

    Article  PubMed  CAS  Google Scholar 

  27. Fernández-Tomé P, Brera B, Arévalo MA et al (2004) β-Amyloid25–35 inhibits glutamate uptake in cultured neurons and astrocytes: modulation of uptake as a survival mechanism. Neurobiol Dis 15:580–589

    Article  PubMed  Google Scholar 

  28. Oshima T, Karasawa F, Satoh T (2002) Effects of propofol on cerebral blood flow and the metabolic rate of oxygen in humans. Acta Anaesthesiol Scand 46:831–835

    Article  PubMed  CAS  Google Scholar 

  29. Newman MF, Murkin JM, Roach G et al (1995) Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass. Anesth Analg 81:452–457

    PubMed  CAS  Google Scholar 

  30. De La Cruz JP, Sedeño G, Carmona JA et al (1998) The in vitro effects of propofol on tissular oxidative stress in the rat. Anesth Analg 87:1141–1146

    PubMed  Google Scholar 

  31. Grasshoff C, Gillessen T (2002) The effect of propofol on increased superoxide concentration in cultured rat cerebrocortical neurons after stimulation of N-methyl-d-aspartate receptors. Anesth Analg 95:920–922

    PubMed  CAS  Google Scholar 

  32. Lingamaneni R, Birch ML, Hemmings HC Jr (2001) Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol. Anesthesiology 95:1460–1466

    Article  PubMed  CAS  Google Scholar 

  33. Ratnakumari L, Hemmings HC Jr (1997) Effects of propofol on sodium channel-dependent sodium influx and glutamate release in rat cerebrocortical synaptosomes. Anesthesiology 86:428–439

    Article  PubMed  CAS  Google Scholar 

  34. Benveniste H, Drejer J, Schousboe A et al (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Article  PubMed  CAS  Google Scholar 

  35. Shimada N, Graf R, Rosner G et al (1993) Ischemia-induced accumulation of extracellular amino acids in cerebral cortex, white matter, and cerebrospinal fluid. J Neurochem 60:66–71

    Article  PubMed  CAS  Google Scholar 

  36. Uchiyama-Tsuyuki Y, Araki H, Yae T et al (1994) Changes in the extracellular concentrations of amino acids in the rat striatum during transient focal cerebral ischemia. J Neurochem 62:1074–1078

    Article  PubMed  CAS  Google Scholar 

  37. Vernier P, Cardinaud B, Valdenaire O et al (1995) An evolutionary view of drug-receptor interaction: the bioamine receptor family. Trends Pharmacol Sci 16:375–381

    Article  PubMed  CAS  Google Scholar 

  38. Lee FJ, Wang YT, Liu F (2005) Direct receptor cross-talk can mediate the modulation of excitatory and inhibitory neurotransmission by dopamine. J Mol Neurosci 26:245–252

    Article  PubMed  CAS  Google Scholar 

  39. Danbolt NC (1994) The high affinity uptake system for excitatory amino acids in the brain. Prog Neurobiol 44:377–396

    Article  PubMed  CAS  Google Scholar 

  40. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 22:1–45

    Article  PubMed  CAS  Google Scholar 

  41. Fraser DD, Duffy S, Angelides KJ et al (1995) GABAA/benzodiazepine receptors in acutely isolated hippocampal astrocytes. J Neurosci 15:2720–2732

    PubMed  CAS  Google Scholar 

  42. Bovolin P, Santi MR, Puia G et al (1992) Expression patterns of gamma- aminobutyric acid type A receptor subunit mRNAs in primary cultures of granule neurons and astrocytes from neonatal rat cerebella. Proc Natl Acad Sci USA 89:9344–9348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by: 1. National Natural Science Foundation of China (No: 30770738); 2. Special Foundation for Doctor Education in University from Ministry of Education, PR China (No: 20050089001); 3. Natural Science Foundation of Hebei Province, PR China (No: C200500720 and No: C2008001042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Hu, Y., Li, W. et al. The neuroprotective effect of propofol against brain ischemia mediated by the glutamatergic signaling pathway in rats. Neurochem Res 36, 1724–1731 (2011). https://doi.org/10.1007/s11064-011-0487-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0487-1

Keywords

Navigation