Skip to main content
Log in

Antiangiogenic and Apoptotic Properties of a Novel Amphiphilic Folate-Heparin-Lithocholate Derivative Having Cellular Internality for Cancer Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Anitangiogenic and apoptotic properties of a novel chemically modified heparin derivative with low anticoagulant activity were evaluated on the experimental in vitro and in vivo model.

Materials and Methods

Heparin-lithocholate conjugate (HL) was initially synthesized by covalently bonding lithocholate to heparin. Folate-HL conjugate (FHL) was further synthesized by conjugating folate to HL. Antiangiogenic and apoptotic abilities of HL and FHL were characterized in vitro and in vivo experimentations.

Results

Compared to unmodified heparin, both HL and FHL represented a low anticoagulant activity (38 and 28%, respectively). HL and FHL maintained antiangiogenic activity even further modification from the results of Matrigel plugs assay. FHL specifically induced apoptosis on KB cells having highly expressed folate receptor after cellular internalization. Both administered HL and FHL had similar antiangiogenic activity and inhibitory effect on tumor growth in vivo although FHL induced higher apoptosis on tumor tissues.

Conclusions

In vivo tumor growth inhibition was possibly due to the decrease of vessel density and apoptotic cell death, although antiangiogenic effect of FHL seemed more actively affected on growth inhibition than apoptotic potential in vivo system. Thus, Low anticoagulant FHL having antiangiogenic and apoptotic properties would provide benefits for the development of a new class of anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bFGF:

basic fibroblast growth factor

FBS:

fetal bovine serum

FHL:

folate-heparin-lithocholate

FITC:

fluorescein isothiocyanate

FR:

folate receptor

HL:

heparin-lithocholate

MTT:

(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)

PBS:

phosphate buffered saline

PI:

propidium iodide

TUNEL:

terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling

UFH:

unfractionated heparin

References

  1. R. Sasisekharan, Z. Shriver, G. Venkataraman, and U. Narayanasami. Roles of heparan-sulphate glycosaminoglycans in cancer. Nat. Rev. Cancer 2:521–528 (2002).

    Article  CAS  Google Scholar 

  2. S. M. Smorenburg and C. J. Van Noorden. The complex effects of heparins on cancer progression and metastasis in experimental studies. Pharmacol. Rev. 53:93–105 (2001).

    PubMed  CAS  Google Scholar 

  3. M. Hejna, M. Raderer, and C. C. Zielinski. Inhibition of metastases by anticoagulants. J. Natl. Cancer Inst. 91:22–36 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. L. R. Zacharski and D. L. Ornstein. Heparin and cancer. Thromb. Haemost. 80:10–23 (1998).

    PubMed  CAS  Google Scholar 

  5. E. Erduran, Y. Tekelioglu, Y. Gedik, and A. Yildiran. Apoptotic effects of heparin on lymphoblasts, neutrophils, and mononuclear cells: results of a preliminary in vitro study. Am. J. Hematol. 61:90–93 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. H. L. Li, K. H. Ye, H. W. Zhang, Y. R. Luo, X. D. Ren, A. H. Xiong, and R. Situ. Effect of heparin on apoptosis in human nasopharyngeal carcinoma CNE2 cells. Cell Res. 11:311–315 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. S. J. Busch, G. A. Martin, R. L. Barnhart, and R. L. Jackson. Trans-repressor activity of nuclear glycosaminoglycans on Fos and Jun/AP-1 oncoprotein-mediated transcription. J. Cell Biol. 116:31–42 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. D. Berry, D. M. Lynn, R. Sasisekharan, and R. Langer. Poly(beta-amino ester)s promote cellular uptake of heparin and cancer cell death. Chem. Biol. 11:487–498 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. J. Hasan, S. D. Shnyder, A. R. Clamp, A. T. McGown, R. Bicknell, M. Presta, M. Bibby, J. Double, S. Craig, D. Leeming, K. Stevenson, J.T. Gallagher, and G. C. Jayson. Heparin octasaccharides inhibit angiogenesis in vivo. Clin. Cancer Res. 11:8172–8179 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. H. Engelberg. Actions of heparin that may affect the malignant process. Cancer 85:257–272 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. C. R. Parsish, C. Freeman, K. J. Brown, D. J. Francis, and W. B. Cowden. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 59:3433–3441 (1999).

    Google Scholar 

  12. K. Ono, M. Ishihara, K. Ishikawa, Y. Ozeki, H. Deguchi, M. Sato, H. Hashimoto, Y. Saito, H. Yura, A. Kurita, and T. Maehara. Periodate-treated, non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) affects angiogenesis and inhibits subcutaneous induced tumour growth and metastasis to the lung. Br. J. Cancer 86:1803–1812 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. P. E. Thorpe, E. J. Derbyshire, S. P. Andrade, N. Press, P. P. Knowles, S. King, G. J. Watson, Y. C. Yang, and M. Rao-Bette. Heparin-steroid conjugates: new angiogenesis inhibitors with antitumor activity in mice. Cancer Res. 53:3000–3007 (1993).

    PubMed  CAS  Google Scholar 

  14. M. Gohda, T. Magoshi, S. Kato, T. Noguchi, S. Yasuda, H. Nonogi, and T. Matsuda. Terminally alkylated heparin. 2. Potent antiproliferative agent for vascular smooth muscle cells. Biomacromolecules 2:1178–1183 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. S. Miotti, S. Canevari, S. Menard, D. Mezzanzanica, G. Porro, S. M. Pupa, M. Regazzoni, E. Tagliabue, and M. I. Colnaghi. Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int. J. Cancer 39:297–303 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. L. R. Coney, A. Tomassetti, L. Carayannopoulos, V. Frasca, B. A. Kamen, M. I. Colnaghi, and V. R. Zurawski Jr. Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res. 51:6125–6132 (1991).

    PubMed  CAS  Google Scholar 

  17. S. D. Weitman, R. H. Lark, L. R. Coney, D. W. Fort, V. Frasca, V. R. Zurawski Jr, and B. A. Kamen. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 52:3396–3401 (1992).

    PubMed  CAS  Google Scholar 

  18. G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, and M. Boiocchi. Overexpression of folate binding protein in ovarian cancers. Int. J. Cancer 74:193–198 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, and C. P. Leamon. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 338:284–293 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. C. P. Leamon and P. S. Low. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov. Today 6:44–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. J. Sudimack and R. J. Lee. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41:147–162 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. K. Park, K. Kim, I. C. Kwon, S. K. Kim, S. Lee, D. Y. Lee, and Y. Byun. Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir 20:11726–11731 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. S. Wang, R. J. Lee, C. J. Mathias, M. A. Green, and P. S. Low. Synthesis, purification, and tumor cell uptake of 67Ga-deferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjug. Chem. 7:56–62 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. C. J. Mathias, S. Wang, P. S. Low, D. J. Waters, and M. A. Green. Receptor-mediated targeting of 67Ga-deferoxamine-folate to folate-receptor-positive human KB tumor xenografts. Nucl. Med. Biol. 26:23–25 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. T. Chandy, G. S. Das, R. F. Wilson, and G. H. Rao. Use of plasma glow for surface-engineering biomolecules to enhance blood compatibility of Dacron and PTFE vascular prosthesis. Biomaterials 21:699–712 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. Y. Lee, H. T. Moon, and Y. Byun. Preparation of slightly hydrophobic heparin derivatives which can be used for solvent casting in polymeric formulation. Thromb. Res. 92:149–156 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. J. O. Nam, J. E. Kim, H. W. Jeong, S. J. Lee, B. H. Lee, J. Y. Choi, R. W. Park, J. Y. Park, and I. S. Kim. Identification of the ανβ3 integrin-interacting motif of βig-h3 and its anti-angiogenic effect. J. Biol. Chem. 278:25902–25909 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. T. Barzu, J. L. Van Rijn, M. Petitou, P. Molho, G. Tobelem, and J. P. Caen. Endothelial binding sites for heparin. Specificity and role in heparin neutralization. Biochem. J. 238:847–854 (1986).

    PubMed  CAS  Google Scholar 

  29. P.A. Raj, E. Marcus E, and R. Rein. Conformational requirements of suramin to target angiogenic growth factors. Angiogenesis 2:183–199 (1998).

    PubMed  CAS  Google Scholar 

  30. R. J. Linhardt. Heparin-induced cancer cell death. Chem. Biol. 11:420–422 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. O. Filhol, C. Cochet, and E. M. Chambaz. DNA binding activity of casein kinase II. Biochem. Biophys. Res. Commun. 173:862–871 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. E. Beutler, T. Gelbart, and W. Kuhl. Interference of heparin with the polymerase chain reaction. Biotechniques 9:166–170 (1990).

    PubMed  CAS  Google Scholar 

  33. K. Park, G. Y. Lee, Y. S. Kim, M Yu, R. W. Park, I. S. Kim, S. Y. Kim, and Y. Byun. Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity. J. Control. Release 114:300–306 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. K. Park, Y. S. Kim, G. Y. Lee, J. O. Nam, S. K. Lee, R. W. Park, S. Y. Kim, I. S. Kim, and Y. Byun. Antiangiogenic effect of bile acid acylatedfs heparin derivative. Pharm. Res. 24:176–185 (2007).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the grant from Next Generation New Technology Development Program of the Korean Ministry of Commerce, Industry, and Energy (Grant no. 10011353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngro Byun.

Additional information

These authors contributed equally to this work as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M.K., Lee, D.Y., Kim, Y.S. et al. Antiangiogenic and Apoptotic Properties of a Novel Amphiphilic Folate-Heparin-Lithocholate Derivative Having Cellular Internality for Cancer Therapy. Pharm Res 24, 705–714 (2007). https://doi.org/10.1007/s11095-006-9190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9190-3

Key words

Navigation