Skip to main content

Advertisement

Log in

Tumor Endothelial Cell Targeted Cyclic RGD-modified Heparin Derivative: Inhibition of Angiogenesis and Tumor Growth

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstracts

Purpose

We prepared tumor endothelium targeted cRGD-modified heparin derivative (cRGD-HL) by coupling heparin-lithocholic acid (HL) with cRGDyK, and evaluated inhibition effects of cRGD-HL on angiogenesis and tumor growth.

Methods

To evaluate antiangiogenic activity of cRGD-HL, we performed tests on endothelial cell adhesion and migration to vitronectin, tube formation, binding affinity to purified αvβ3 integrin, and in vivo Matrigel plug assay. The antitumor activity of cRGD-HL was also evaluated by monitoring tumor growth and microvessel formation in squamous cell carcinoma (SCC7) tumor.

Results

The cRGD-HL significantly inhibited adhesion and migration of endothelial cells to vitronectin, and tubular structures of endothelial cells. Compared to cRGDyK and HL, cRGD-HL has high binding affinity to purified αvβ3 integrin. The enhanced antiangiogenic effect of cRGD-HL was confirmed in Matrigel assay by showing the significant inhibition of bFGF-driven angiogenesis and blood vessel formation. It was thought that potent antiangiogenic effect of cRGD-HL was probably due to the interference of αvβ3-mediated interaction, resulting in the enhanced antitumoral activity against SCC7 tumor.

Conclusion

These results demonstrated that cRGD-modified heparin derivative enhanced anti-angiotherapeutic effects against solid tumor, and therefore, it could be applied to treat various cancers and angiogenic diseases as a potent angiogenesis inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

bFGF:

basic fibroblast growth factor

ECM:

extracellular matrix

ERK:

extracellular signal-regulated kinase

FGFR:

fibroblast growth factor receptor

HL:

heparin-lithocholic acid

HUVEC:

human umbilical vein endothelial cells

MAPK:

mitogen-activated protein kinase

SCC7:

squamous cell carcinoma

References

  1. J. Folkman. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285:1182–1186 (1971).

    PubMed  CAS  Google Scholar 

  2. J. Folkman. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82:4–6 (1990) doi:10.1093/jnci/82.1.4.

    Article  PubMed  CAS  Google Scholar 

  3. J. Folkman. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1:27–31 (1995) doi:10.1038/nm0195-27.

    Article  PubMed  CAS  Google Scholar 

  4. A. W. Griffioen, and G. Molema. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases and chronic inflammation. Pharmacol. Rev. 53:237–268 (2000).

    Google Scholar 

  5. P. Carmeliet, and R. K. Jain. Angiogenesis in cancer and other diseases. Nature. 407:249–257 (2000) doi:10.1038/35025220.

    Article  PubMed  CAS  Google Scholar 

  6. D. Srivastava, P. Cserjesi, and E. N. Olson. A subclass of bHLH proteins required for cardiac morphogenesis. Science. 270:1995–1999 (1995) doi:10.1126/science.270.5244.1995.

    Article  PubMed  CAS  Google Scholar 

  7. H. P. Hammes, M. Brownlee, A. Jonczyk, A. Sutter, and K. T. Preissner. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat. Med. 2:529–533 (1996) doi:10.1038/nm0596-529.

    Article  PubMed  CAS  Google Scholar 

  8. R. O. Schlingemann, F. J. Rietveld, R. M. de Waal, S. Ferrone, and D. J. Ruiter. Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol. 136:1393–1405 (1990).

    PubMed  CAS  Google Scholar 

  9. M. A. Burg, R. Pasqualini, W. Arap, E. Ruoslahti, and W. B. Stallcup. NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res. 59:2869–2874 (1999).

    PubMed  CAS  Google Scholar 

  10. S. Zitxmann, V. Ehemann, and M. Schwab. Arginine–glycine–aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res. 62:5139–5143 (2000).

    Google Scholar 

  11. X. Chen, P. S. Conti, and R. A. Moats. In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Cancer Res. 64:8009–8014 (2004) doi:10.1158/0008-5472.CAN-04-1956.

    Article  PubMed  CAS  Google Scholar 

  12. Z. Cheng, W. Yun, X. Zhengming, S. S. Gambhir, and X. Chen. Near-infrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice. Bioconj. Chem. 16:1433–1441 (2005) doi:10.1021/bc0501698.

    Article  CAS  Google Scholar 

  13. B. Haubner, H. J. Wester, W. A. Weber, and M. Schwaiger. Radiotracer-based strategies to image angiogenesis. Q. J. Nucl. Med. 47:189–199 (2003).

    PubMed  CAS  Google Scholar 

  14. W. Arap, R. Pasqualini, and E. Ruoslahti. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 279:377–380 (1998) doi:10.1126/science.279.5349.377.

    Article  PubMed  CAS  Google Scholar 

  15. H. M. Ellerby, W. Arap, L. M. Ellerby, R. Kain, R. Andrusiak, G. D. Rio, S. Krajewski, C. R. Lombardo, R. Rao, E. Ruoslahti, D. E. Bredesen, and R. Pasqualini. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 5:1032–1038 (1995).

    Google Scholar 

  16. W. Suh, S. O. Han, L. Yu, and S. W. Kim. An angiogenic, endothelial-cell-targeted polymeric gene carrier. Mol. Ther. 6:664–672 (2002) doi:10.1016/S1525-0016(02)90721-5.

    Article  PubMed  CAS  Google Scholar 

  17. W. J. Kim, J. W. Yockman, M. Lee, J. H. Jeong, Y. H. Kim, and S. W. Kim. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J. Control. Release. 106:224–234 (2005) doi:10.1016/j.jconrel.2005.04.016.

    Article  PubMed  CAS  Google Scholar 

  18. W. J. Kim, J. W. Yockman, J. H. Jeong, L. V. Christensen, M. Lee, Y. H. Kim, and S. W. Kim. Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice. J. Control. Release. 114:381–388 (2006) doi:10.1016/j.jconrel.2006.05.029.

    Article  PubMed  CAS  Google Scholar 

  19. J. D. Hood, M. Bednarski, R. Frausto, S. Guccione, R. A. Reisfeld, R. Xiang, and D. A. Cheresh. Tumor regression by targeted gene delivery to the neovasculature. Science. 296:2404–2407 (2002) doi:10.1126/science.1070200.

    Article  PubMed  CAS  Google Scholar 

  20. N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. F. Chin, A. D. Sherry, D. A. Boothman, and J. Gao. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6:2427–2430 (2006) doi:10.1021/nl061412u.

    Article  PubMed  CAS  Google Scholar 

  21. K. Temming, D. L. Meyer, R. Zabinski, E. C. Dijkers, K. Poelstra, G. Molema, and R. J. Kok. Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels. Bioconjug. Chem. 17:1385–1394 (2006) doi:10.1021/bc060087z.

    Article  PubMed  CAS  Google Scholar 

  22. K. Temming, D. L. Meyer, R. Zabinski, P. D. Senter, K. Poelstra, G. Molema, and R. J. Kok. Improved efficacy of alphavbeta3-targeted albumin conjugates by conjugation of a novel auristatin derivative. Mol. Pharm. 4:686–694 (2007) doi:10.1021/mp0700312.

    Article  PubMed  CAS  Google Scholar 

  23. J. A. Varner, and D. A. Cheresh. Integrins and cancer. Curr. Opin. Cell Biol. 8:724–730 (1996) doi:10.1016/S0955-0674(96)80115-3.

    Article  PubMed  CAS  Google Scholar 

  24. K. Park, K. Kim, I. C. Kwon, S. K. Kim, S. Lee, D. Y. Lee, and Y. Byun. Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir. 20:11726–11731 (2004) doi:10.1021/la048646i.

    Article  PubMed  CAS  Google Scholar 

  25. K. Park, G. Y. Lee, Y. S. Kim, M. Yu, R. W. Park, I. S. Kim, S. Y. Kim, and Y. Byun. Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity. J. Control. Release. 114:300–306 (2006) doi:10.1016/j.jconrel.2006.05.017.

    Article  PubMed  CAS  Google Scholar 

  26. K. Park, Y. S. Kim, G. Y. Lee, J. O. Nam, S. K. Lee, R. W. Park, S. Y. Kim, I. S. Kim, and Y. Byun. Antiangiogenic effect of bile acid acylated heparin derivative. Pharm. Res. 24:176–185 (2007) doi:10.1007/s11095-006-9139-6.

    Article  PubMed  CAS  Google Scholar 

  27. M. K. Yu, D. Y. Lee, Y. S. Kim, K. Park, S. A. Park, D. H. Son, G. Y. Lee, J. H. Nam, S. Y. Kim, I. S. Kim, R. W. Park, and Y. Byun. Antiangiogenic and apoptotic properties of a novel amphiphilic folate-heparin-lithocholate derivative having cellular internality for cancer therapy. Pharm. Res. 24:705–714 (2007) doi:10.1007/s11095-006-9190-3.

    Article  PubMed  CAS  Google Scholar 

  28. M. N. Levin, J. Hirsh, and J. G. Kelton. Heparin-induced bleeding. In D. A. Lane, and E. Lindhal (eds.), In heparin: chemical and biological properties, clinical applications, CRC Press, Boca Raton, 1989.

    Google Scholar 

  29. J. D. Douketis, J. S. Ginsberg, R. F. Burrows, E. K. Duku, C. E. Webber, and P. Brill-Edwards. The effects of long-term heparin therapy during pregnancy on bone density. A prospective matched cohort study. Thromb. Haemost. 75:254–257 (1996) doi:10.1159/000134495.

    Article  PubMed  CAS  Google Scholar 

  30. T. Irimura, M. Nakajima, and G. L. Nicolson. Chemically modified heparins as inhibitors of heparan sulfate specific endo-beta-glucuronidase (heparanase) of metastatic melanoma cells. Biochemistry. 25:5322–5328 (1986) doi:10.1021/bi00366a050.

    Article  PubMed  CAS  Google Scholar 

  31. P. E. Thorpe, E. J. Derbyshire, S. P. Andrade, N. Press, P. P. Knowles, S. King, G. J. Watson, Y. C. Yang, and M. Rao-Bette. Heparin-steroid conjugates: new angiogenesis inhibitors with antitumor activity in mice. Cancer Res. 53:3000–3007 (1993).

    PubMed  CAS  Google Scholar 

  32. K. Ono, M. Ishihara, K. Ishikawa, Y. Ozeki, H. Deguchi, M. Sato, H. Hashimoto, Y. Saito, H. Yura, A. Kurita, and T. Maehara. Periodate-treated, non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) affects angiogenesis and inhibits subcutaneous induced tumour growth and metastasis to the lung. Br. J. Cancer. 86:1803–1812 (2002) doi:10.1038/sj.bjc.6600307.

    Article  PubMed  CAS  Google Scholar 

  33. C. Y. Pumphrey, A. M. Theus, S. Li, R. S. Parrish, and R. D. Sanderson. Neoglycans, carbodiimide-modified glycosaminoglycans: a new class of anticancer agents that inhibit cancer cell proliferation and induce apoptosis. Cancer Res. 62:3722–3728 (2002).

    PubMed  CAS  Google Scholar 

  34. B. Gimelius, C. Busch, and M. Hook. Binding of heparin on the surface of cultured human endothelial cells. Thromb. Res. 12:773–782 (1978) doi:10.1016/0049-3848(78)90271-2.

    Article  Google Scholar 

  35. L. M. Hiebert, and L. B. Jaques. The observation of heparin on endothelium after injection. Thromb. Res. 8:195–204 (1976) doi:10.1016/0049-3848(76)90262-0.

    Article  PubMed  CAS  Google Scholar 

  36. N. Sakamoto, and N. G. Tanaka. Mechanism of the synergistic effect of heparin and cortisone against angiogenesis and tumor growth. Cancer J. 2:9–16 (1988).

    CAS  Google Scholar 

  37. Y. Lee, H. T. Moon, and Y. Byun. Preparation of slightly hydrophobic heparin derivatives which can be used for solvent casting in polymeric formulation. Thromb. Res. 92:149–156 (1998) doi:10.1016/S0049-3848(98)00124-8.

    Article  PubMed  CAS  Google Scholar 

  38. D. A. Jaffe, R. L. Nachman, C. G. Becker, and C. R. Minick. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756 (1973) doi:10.1172/JCI107470.

    Article  PubMed  CAS  Google Scholar 

  39. M. Aumailley, M. Gurrath, G. Muller, J. Calvete, R. Timpl, and H. Kessler. Arg–Gly–Asp, constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett. 291:50–54 (1991) doi:10.1016/0014-5793(91)81101-D.

    Article  PubMed  CAS  Google Scholar 

  40. S. J. Bogdanowich-Knipp, S. Chakrabarti, T. D. Williams, R. K. Dillman, and T. J. Siahaan. Solution stability of linear vs. cyclic RGD peptides. J. Pept. Res. 53:530–541 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. K. M. Yamada. Adhesive recognition sequences. J. Biol. Chem. 266:12809–12812 (1991).

    PubMed  CAS  Google Scholar 

  42. J. Denekamp. Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br. J. Radiol. 66:181–196 (1993).

    Article  PubMed  CAS  Google Scholar 

  43. F. J. Burrows, and P. E. Thorpe. Vascular targeting: a new approach to the therapy of solid tumors. Pharmacol. Ther. 64:155–174 (1994) doi:10.1016/0163-7258(94)90037-X.

    Article  PubMed  CAS  Google Scholar 

  44. J. P. Xiong, T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S. L. Goodman, and M. A. Arnaout. Crystal structure of the extracellular segment of integrin alpha v beta3 in complex with an Arg-Gly-Asp ligand. Science. 296:151–155 (2002) doi:10.1126/science.1069040.

    Article  PubMed  CAS  Google Scholar 

  45. P. A. Raj, E. Marcus, and R. Rein. Conformational requirements of suramin to target angiogenic growth factors. Angiogenesis. 2:183–199 (1998) doi:10.1023/A:1009244623717.

    PubMed  CAS  Google Scholar 

  46. D. I. Leavesley, G. D. Ferguson, E. A. Wayner, and D. A. Cheresh. Requirement of the integrin beta 3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J. Cell Biol. 117:1101–1107 (1991) doi:10.1083/jcb.117.5.1101.

    Article  Google Scholar 

  47. F. Hunter, J. Xie, C. Trimble, M. Bur, and K. C. Li. Rhodamine-RCA in vivo labeling guided laser capture microdissection of cancer functional angiogenic vessels in a murine squamous cell carcinoma mouse model. Mol. Cancer. 5:5 (2006) doi:10.1186/1476-4598-5-5.

    Article  PubMed  CAS  Google Scholar 

  48. Y. Matsumura, and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and antitumor agent smancs. Cancer Res. 46:6387–6392 (1986).

    PubMed  CAS  Google Scholar 

  49. G. Y. Lee, S. K. Kim, and Y. Byun. Glucosylated heparin derivatives as non-toxic anti-cancer drugs. J. Control. Release. 123:46–55 (2007) doi:10.1016/j.jconrel.2007.07.017.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Next generation New Technology Development Program (Grant: # 10011353) of Ministry of Commerce, Industry and Energy in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngro Byun.

Additional information

Kyeongsoon Park and Yoo-Shin Kim contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K., Kim, YS., Lee, G.Y. et al. Tumor Endothelial Cell Targeted Cyclic RGD-modified Heparin Derivative: Inhibition of Angiogenesis and Tumor Growth. Pharm Res 25, 2786–2798 (2008). https://doi.org/10.1007/s11095-008-9643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9643-y

KEY WORDS

Navigation