Skip to main content

Advertisement

Log in

Cancer Patient–Derived Circulating Microparticles Enhance Lung Metastasis in a Rat Model: Dual-Source CT, Cellular, and Molecular Studies

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to test the hypothesis that lung cancer patient–derived circulating microparticles (LCC-MPs) enhance metastatic lung tumors in a rat model.

Procedures

The controls (n = 6) and LCC-MP-treated rats (n = 6) with N1S1-induced pulmonary metastatic hepatocellular carcinoma (HCC) underwent dual-source CT (DSCT) on days 10, 15, and 20. Cellular and molecular studies were performed subsequently.

Results

DSCT revealed slow progression of metastatic lung tumors in the controls. Compared with the controls, the LCC-MP-treated rats exhibited significantly more and larger metastatic tumors on days 15 and 20 on DSCT, enhanced angiogenesis with higher microvessel count (CD34+), more CXCR4+ and VEGF+ cells in immunohistofluorescence studies, and higher protein expression levels of eNOS, angiopoietin, vascular endothelial growth factor, and CD31 on western blotting (Mann–Whitney test, all P < 0.05).

Conclusions

LCC-MPs can elicit oncogenic stimulation and accelerate metastatic HCC growth in rat lung as demonstrated on DSCT and enhanced tumoral angiogenesis as confirmed in cellular and molecular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barteneva NS, Fasler-Kan E, Bernimoulin M et al (2013) Circulating microparticles: square the circle. BMC Cell Biol 14:23. doi:10.1186/1471-2121-14-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muralidharan-Chari V, Clancy JW, Sedgwick A et al (2010) Microvesicles mediators of extracellular communication during cancer progression. J Cell Sci 123(Pt 10):1603–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shai E, Varon D (2011) Development, cell differentiation, angiogenesis—microparticles and their roles in angiogenesis: Arterioscler Thromb. Vasc Biol 31:10–14

    Article  CAS  Google Scholar 

  4. Toth B, Nikolajek K, Rank A et al (2007) Gender-specific and menstrual cycle dependent differences in circulating microparticles. Platelets 17:515–521

    Article  Google Scholar 

  5. D’Souza-Schorey C, Clancy JW (2012) Tumor-derived microvesicles:shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 26:1287–1299

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  CAS  PubMed  Google Scholar 

  7. Fleitas T, Martínez-Sales V, Vila V et al (2012) Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer. PLoS One 7(10):e47365. doi:10.1371/journal.pone.0047365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tseng CC, Wang CC, Chang HC et al (2013) Levels of circulating microparticles in lung cancer patients and possible prognostic value. Dis Markers 35:301–310

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang CC, Tseng CC, Hsiao CC et al (2014) Circulating endothelial-derived activated microparticle: a useful biomarker for predicting one-year mortality in patients with advanced non-small cell lung cancer. Biomed Res Int 2014(2014):173401. doi:10.1155/2014/173401

    PubMed  PubMed Central  Google Scholar 

  10. Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    Article  CAS  PubMed  Google Scholar 

  11. Yang C, Gagnon C, Hou X et al (2010) Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells. Cancer Biol Ther 10:448–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Masuda H, Okano HJ, Maruyama T et al (2008) In vivo imaging in humanized mice. Curr Top Microbiol Immunol 324:179–196

    CAS  PubMed  Google Scholar 

  13. Badea CT, Drangova M, Holdsworth DW et al (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 53:R319–350. doi:10.1088/0031-9155/53/19/R01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo X, Johnston SM, Qi Y, Johnson GA et al (2012) 4D micro-CT using fast prospective gating. Phys Med Biol 57:257–271

    Article  PubMed  PubMed Central  Google Scholar 

  15. Flohr TG, Leng S, Yu L et al (2009) Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality. Med Phys 36:5641–5653

    Article  PubMed  Google Scholar 

  16. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

  17. Edmondson HA, Steiner PE (1954) Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer 7:462–503

    Article  CAS  PubMed  Google Scholar 

  18. Wysoczynski M, Ratajczak MZ (2009) Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer 12:1595–1603

    Article  Google Scholar 

  19. Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 210:619–624

    Article  Google Scholar 

  20. Al-Nedawi K, Meehan B, Kerbel RS et al (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A 106:3794–3799

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luker GD (2008) Luker KE (2008). Optical imaging: current applications and future directions. J Nucl Med 49:1–4

    Article  PubMed  Google Scholar 

  22. Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2:303–312

    Article  CAS  PubMed  Google Scholar 

  23. Kim HK, Song KS, Park YS et al (2003) Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 39:184–191

    Article  CAS  PubMed  Google Scholar 

  24. Toth B, Liebhardt S, Steinig K et al (2008) Platelet-derived microparticles and coagulation activation in breast cancer patients. Thromb Haemost 100:663–669

    CAS  PubMed  Google Scholar 

  25. Shet AS (2008) Characterizing blood microparticles: technical aspects and challenges. Vasc Health Risk Manag 4:769–767

    PubMed  PubMed Central  Google Scholar 

  26. Mezouar S, Mege D, Darbousset R et al (2014) Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin Oncol 41:346–58

    Article  CAS  PubMed  Google Scholar 

  27. Mostefai HA, Andriantsitohaina R, Martínez MC (2008) Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol Res 57:311–320

    CAS  PubMed  Google Scholar 

  28. Lacroix R, Sabatier F, Mialhe A et al (2007) Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood 110:2432–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun HC, Tang ZY, Li XM et al (1999) Microvessel density of hepatocellular carcinoma: its relationship with prognosis. J Cancer Res Clin Oncol 12:419–426

    Article  Google Scholar 

  30. Paschoal JP, Bernardo V, Canedo NH et al (2014) Microvascular density of regenerative nodule to small hepatocellular carcinoma by automated analysis using CD105 and CD34 immunoexpression. BMC Cancer 2014(14):72. doi:10.1186/1471-2407-14-72

    Article  Google Scholar 

  31. Park YN, Kim YB, Yang KM et al (2000) Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med 124:1061–1065

    CAS  PubMed  Google Scholar 

  32. Yamaguchi R, Yano H, Iemura A et al (1998) Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 28:68–77

    Article  CAS  PubMed  Google Scholar 

  33. Sun HC, Tang ZY (2004) Angiogenesis in hepatocellular carcinoma: the retrospectives and perspectives. J Cancer Res Clin Oncol 130:307–319

    Article  PubMed  Google Scholar 

  34. Heo SH, Jeong YY, Shin SS et al (2010) Apparent diffusion coefficient value of diffusion-weighted imaging for hepatocellular carcinoma: correlation with the histologic differentiation and the expression of vascular endothelial growth factor. Korean J Radiol 11:295–303

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheung-Fat Ko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the Chang Gung Medical Foundation, Taiwan (grant number CMRPG8C0271).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, SF., Yip, HK., Zhen, YY. et al. Cancer Patient–Derived Circulating Microparticles Enhance Lung Metastasis in a Rat Model: Dual-Source CT, Cellular, and Molecular Studies. Mol Imaging Biol 18, 490–499 (2016). https://doi.org/10.1007/s11307-015-0923-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0923-8

Key words

Navigation