Skip to main content

Advertisement

Log in

Development and validation of a gene signature for pancreatic cancer: based on inflammatory response–related genes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PC) is one of the most common malignant tumors in the world with a poor prognosis. There were limited studies investigating the genetic signatures associated with inflammatory responses, tumor microenvironment (TME), and tumor drug sensitivity prediction. In the Cancer Genome Atlas (TCGA) dataset, we constructed an inflammatory response–related genes prognostic signature for PC, and predictive ability of the model was assessed via the International Cancer Genome Consortium (ICGC) database. Then, we explored the differences of TME, immune checkpoint genes and drug resistance genes, and the cancer cell sensitivity to chemotherapy drugs between different risk score group. Based on the TCGA and ICGC databases, we constructed and validated a prognostic model, which consisted of 5 genes (including AHR, F3, GNA15, IL18, and INHBA). Moreover, the prognostic model was independent prognostic factors affecting overall survival (OS). The low-risk score group had better OS, and lower stromal score, compared with patients in the high-risk score group. The difference of antigen-presenting cells, T cell regulation, and drug resistance genes between different risk score groups was found. In addition, the immune checkpoint genes were positively correlation to risk score. The expression levels of AHR, GNA15, IL18, and INHBA were related to the sensitivity of anti-tumor chemotherapy drugs. Gene set enrichment analysis (GSEA) showed significant pathway such as calcium signaling pathway and p53 signaling pathway. We successfully constructed a 5-inflammatory response–related gene signature to predict survival, TME, and cancer cell sensitivity to chemotherapy drugs in PC patients. Furthermore, substantiation was warranted to verify the role of these genes in tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets analyzed for this study were obtained from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and International Cancer Genome Consortium (ICGC) (https://icgc.org/).

References

  • Ansari D, Tingstedt B, Andersson B, Holmquist F, Sturesson C, Williamsson C, Sasor A, Borg D, Bauden M, Andersson R (2016) Pancreatic cancer: yesterday, today and tomorrow. Future Oncol 12:1929–1946

    Article  CAS  Google Scholar 

  • Blum R, Kloog Y (2014) Metabolism addiction in pancreatic cancer. Cell Death Dis 5:e1065

    Article  CAS  Google Scholar 

  • Canzler S, Hackermuller J (2020) multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data. BMC Bioinformatics 21:561

    Article  Google Scholar 

  • Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262

    Article  CAS  Google Scholar 

  • Chen ZL, Qin L, Peng XB, Hu Y, Liu B (2019) INHBA gene silencing inhibits gastric cancer cell migration and invasion by impeding activation of the TGF-beta signaling pathway. J Cell Physiol 234:18065–18074

    Article  CAS  Google Scholar 

  • Cheong JE, Sun L (2018) Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy — challenges and opportunities. Trends Pharmacol Sci 39:307–325

    Article  CAS  Google Scholar 

  • Croken MM, Qiu W, White MW, Kim K (2014) Gene set enrichment analysis (GSEA) of Toxoplasma gondii expression datasets links cell cycle progression and the bradyzoite developmental program. BMC Genomics 15:515

    Article  Google Scholar 

  • Dominguez C, David JM, Palena C (2017) Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Semin Cancer Biol 47:177–184

    Article  CAS  Google Scholar 

  • Fan Z, Luo G, Gong Y, Xu H, Qian Y, Deng S, Huang Q, Yang C, Cheng H, Jin K et al (2020) Prognostic value of the C-reactive protein/lymphocyte ratio in pancreatic cancer. Ann Surg Oncol 27:4017–4025

    Article  Google Scholar 

  • Ferlay J, Partensky C, Bray F (2016) More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol 55:1158–1160

    Article  CAS  Google Scholar 

  • Gheorghe G, Bungau S, Ilie M, Behl T, Vesa CM, Brisc C, Bacalbasa N, Turi V, Costache RS, Diaconu CC (2020) Early diagnosis of pancreatic cancer: the key for survival. Diagnostics (Basel) 10(11):869

  • Gheorghe G, Diaconu CC, Ionescu V, Constantinescu G, Bacalbasa N, Bungau S, Gaman MA, Stan-Ilie M (2022) Risk factors for pancreatic cancer: emerging role of viral hepatitis. J Pers Med 12(1):83

  • Greten FR, Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51:27–41

    Article  CAS  Google Scholar 

  • Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  Google Scholar 

  • Houot R, Schultz LM, Marabelle A, Kohrt H (2015) T-cell-based immunotherapy: adoptive cell transfer and checkpoint inhibition. Cancer Immunol Res 3:1115–1122

    Article  CAS  Google Scholar 

  • Huo J, Wu L, Zang Y (2021) Development and validation of a novel metabolic-related signature predicting overall survival for pancreatic cancer. Front Genet 12:561254

    Article  CAS  Google Scholar 

  • Innamorati G, Wilkie TM, Malpeli G, Paiella S, Grasso S, Rusev B, Leone BE, Valenti MT, Carbonare LD, Cheri S et al (2021) Galpha15 in early onset of pancreatic ductal adenocarcinoma. Sci Rep 11:14922

    Article  CAS  Google Scholar 

  • Kamisawa T, Wood LD, Itoi T, Takaori K (2016) Pancreatic cancer. Lancet 388:73–85

    Article  CAS  Google Scholar 

  • Kandikattu HK, Manohar M, Verma AK, Kumar S, Yadavalli CS, Upparahalli Venkateshaiah S, Mishra A (2021) Macrophages-induced IL-18-mediated eosinophilia promotes characteristics of pancreatic malignancy. Life Sci Alliance 4(8):e202000979

  • Kure S, Matsuda Y, Hagio M, Ueda J, Naito Z, Ishiwata T (2012) Expression of cancer stem cell markers in pancreatic intraepithelial neoplasias and pancreatic ductal adenocarcinomas. Int J Oncol 41:1314–1324

    Article  Google Scholar 

  • Lee BM, Chung SY, Chang JS, Lee KJ, Seong J (2018) The neutrophil-lymphocyte ratio and platelet-lymphocyte ratio are prognostic factors in patients with locally advanced pancreatic cancer treated with chemoradiotherapy. Gut Liver 12:342–352

    Article  CAS  Google Scholar 

  • Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH et al (2019) Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 22:15–36

    Article  Google Scholar 

  • Lin Z, Xu Q, Miao D, Yu F (2021) An inflammatory response-related gene signature can impact the immune status and predict the prognosis of hepatocellular carcinoma. Front Oncol 11:644416

    Article  Google Scholar 

  • Lutz ER, Kinkead H, Jaffee EM, Zheng L (2014) Priming the pancreatic cancer tumor microenvironment for checkpoint-inhibitor immunotherapy. Oncoimmunology 3:e962401

    Article  Google Scholar 

  • Lyu S, Jiang C, Xu R, Huang Y, Yan S (2018) INHBA upregulation correlates with poorer prognosis in patients with esophageal squamous cell carcinoma. Cancer Manag Res 10:1585–1596

    Article  CAS  Google Scholar 

  • Manohar M, Verma AK, Venkateshaiah SU, Mishra A (2018) Role of eosinophils in the initiation and progression of pancreatitis pathogenesis. Am J Physiol Gastrointest Liver Physiol 314:G211–G222

    Article  Google Scholar 

  • Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra A (2017) Pathogenic mechanisms of pancreatitis. World J Gastrointest Pharmacol Ther 8:10–25

    Article  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  Google Scholar 

  • Mitra-Kaushik S, Harding J, Hess J, Schreiber R, Ratner L (2004) Enhanced tumorigenesis in HTLV-1 tax-transgenic mice deficient in interferon-gamma. Blood 104:3305–3311

    Article  CAS  Google Scholar 

  • Mizrahi JD, Surana R, Valle JW, Shroff RT (2020) Pancreatic cancer. Lancet 395:2008–2020

    Article  CAS  Google Scholar 

  • Mo Z, Yu L, Cao Z, Hu H, Luo S, Zhang S (2020) Identification of a hypoxia-associated signature for lung adenocarcinoma. Front Genet 11:647

    Article  CAS  Google Scholar 

  • Mogoanta SS, Costache A, Mutiu G, Bungau SG, Ghilusi M, Grosu F, Vasile M, Vilcea ID, Gherghinescu MC, Mogoanta L et al (2015) A nonfunctional neuroendocrine tumor of the pancreas — a case report. Rom J Morphol Embryol 56:511–519

    Google Scholar 

  • Okano M, Yamamoto H, Ohkuma H, Kano Y, Kim H, Nishikawa S, Konno M, Kawamoto K, Haraguchi N, Takemasa I et al (2013) Significance of INHBA expression in human colorectal cancer. Oncol Rep 30:2903–2908

    Article  CAS  Google Scholar 

  • Okasha H, Elkholy S, El-Sayed R, Wifi MN, El-Nady M, El-Nabawi W, El-Dayem WA, Radwan MI, Farag A, El-Sherif Y et al (2017) Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions. World J Gastroenterol 23:5962–5968

    Article  Google Scholar 

  • Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM, Sulciner ML, Bhasin SS, Bielenberg DR, Chang J, Schmidt BA et al (2019) Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest 129:2964–2979

    Article  Google Scholar 

  • Puga A, Ma C, Marlowe JL (2009) The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol 77:713–722

    Article  CAS  Google Scholar 

  • Raj D, Aicher A, Heeschen C (2015) Concise review: stem cells in pancreatic cancer: from concept to translation. Stem Cells 33:2893–2902

    Article  Google Scholar 

  • Safe S, Lee SO, Jin UH (2013) Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci 135:1–16

    Article  CAS  Google Scholar 

  • Shadhu K, Xi C (2019) Inflammation and pancreatic cancer: an updated review. Saudi J Gastroenterol 25:3–13

    Article  Google Scholar 

  • Sierzega M, Lenart M, Rutkowska M, Surman M, Mytar B, Matyja A, Siedlar M, Kulig J (2017) Preoperative neutrophil-lymphocyte and lymphocyte-monocyte ratios reflect immune cell population rearrangement in resectable pancreatic cancer. Ann Surg Oncol 24:808–815

    Article  Google Scholar 

  • Simon N, Friedman J, Hastie T, Tibshirani R (2011) Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw 39:1–13

    Article  Google Scholar 

  • Sodani K, Patel A, Kathawala RJ, Chen ZS (2012) Multidrug resistance associated proteins in multidrug resistance. Chin J Cancer 31:58–72

    Article  CAS  Google Scholar 

  • Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105

    Article  CAS  Google Scholar 

  • Street SE, Trapani JA, MacGregor D, Smyth MJ (2002) Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196:129–134

    Article  CAS  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  Google Scholar 

  • Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M (2010) Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. Cancer Cell 17:89–97

    Article  CAS  Google Scholar 

  • Tamborero D, Rubio-Perez C, Muinos F, Sabarinathan R, Piulats JM, Muntasell A, Dienstmann R, Lopez-Bigas N, Gonzalez-Perez A (2018) A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin Cancer Res 24:3717–3728

    Article  CAS  Google Scholar 

  • Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16:385–395

    Article  CAS  Google Scholar 

  • Tingle SJ, Severs GR, Goodfellow M, Moir JA, White SA (2018) NARCA: A novel prognostic scoring system using neutrophil-albumin ratio and Ca19-9 to predict overall survival in palliative pancreatic cancer. J Surg Oncol 118:680–686

    Article  CAS  Google Scholar 

  • Wang L, Tang W, Yang S, He P, Wang J, Gaedcke J, Strobel P, Azizian A, Ried T, Gaida MM et al (2020) NO(*) /RUNX3/kynurenine metabolic signaling enhances disease aggressiveness in pancreatic cancer. Int J Cancer 146:3160–3169

    Article  CAS  Google Scholar 

  • Wang L, Wang Y, Song Z, Chu J, Qu X (2015) Deficiency of interferon-gamma or its receptor promotes colorectal cancer development. J Interferon Cytokine Res 35:273–280

    Article  CAS  Google Scholar 

  • Xie F, Huang X, He C, Wang R, Li S (2022) An inflammatory response-related gene signature reveals distinct survival outcome and tumor microenvironment characterization in pancreatic cancer. Front Mol Biosci 9:876607

    Article  CAS  Google Scholar 

  • Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine DA et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  Google Scholar 

  • Zhao Z, Wang K, Tan S (2021) microRNA-211-mediated targeting of the INHBA-TGF-beta axis suppresses prostate tumor formation and growth. Cancer Gene Ther 28:514–528

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Hepatobiliary and Pancreatic Surgery, WeiFang People’s Hospital.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Manjiang Li wrote the article. Yuxu Wang and Yongbiao Ma processed the data analysis. Wei Ding and Futian Du designed the study and reviewed the article.

Corresponding author

Correspondence to Futian Du.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interests

The authors declare no competing interests.

Additional information

Responsible editor Lotfi Aleya

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

11356_2022_23252_MOESM1_ESM.pdf

Supplementary file1 Correlation analysis between inflammatory response‑related signature and the expression levels of immune checkpoint molecules. (A, B) PD-1. (C, D) PD-L1. (E, F) PD-L2. (G, H) CTLA-4. PD-1, programmed cell death 1; PD-L1, programmed cell death-ligand 1; PD-L2, programmed cell death-ligand 2; CTLA-4, Cytotoxic T Lymphocyte antigen 4. (PDF 995 KB)

11356_2022_23252_MOESM2_ESM.pdf

Supplementary file2 Wilcox test test and correlation analysis between inflammatory response‑related signature and the expression levels of tumor resistance genes. (A, B) MRP1. (C, D) MRP2. (E, F) MRP3. (G, H) MRP4. (I, J) MRP8. (PDF 1110 KB)

11356_2022_23252_MOESM3_ESM.pdf

Supplementary file3 Correlation analysis between prognostic model and the expression levels of tumor resistance genes. (A, B) MRP5. (C, D) MRP6. (E, F) MRP7. (G, H) MRP9. (PDF 971 KB)

Supplementary file4 (TXT 1 KB)

Supplementary file5 (TXT 71 KB)

Supplementary file6 (TXT 2 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Ding, W., Wang, Y. et al. Development and validation of a gene signature for pancreatic cancer: based on inflammatory response–related genes. Environ Sci Pollut Res 30, 17166–17178 (2023). https://doi.org/10.1007/s11356-022-23252-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23252-w

Keywords

Navigation