Skip to main content
Log in

Short exposure to paclitaxel induces multipolar spindle formation and aneuploidy through promotion of acentrosomal pole assembly

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Paclitaxel is a widely used microtubule drug and cancer medicine. Here we report that by short exposure to paclitaxel at a low dose, multipolar spindles were induced in mitotic cells without centrosome amplification. Both TPX2 depletion and Aurora-A overexpression antagonized the multipolarity. Live cell imaging showed that some paclitaxel-treated cells accomplished multipolar cell division and a portion of the daughter cells went on to the next round of mitosis. The surviving cells grew into clones with varied genome content. The results indicated that an aneuploidy population could be induced by short exposure to paclitaxel at a low dose, implicating potential side effects of paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boveri T B. Zur Frage der Entstehung maligner Tumoren. Jena: Gustav Fischer, 1914

    Google Scholar 

  2. Brinkley B R. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol, 2001, 11: 18–21 1:CAS:528:DC%2BD3MXnvFWn, 10.1016/S0962-8924(00)01872-9, 11146294

    Article  PubMed  CAS  Google Scholar 

  3. Saunders W S, Shuster M, Huang X, et al. Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc Natl Acad Sci USA, 2000, 97: 303–308 1:CAS:528:DC%2BD3cXjvVGisA%3D%3D, 10.1073/pnas.97.1.303, 10618413

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Quintyne N J, Reing J E, Hoffelder D R, et al. Spindle multipolarity is prevented by centrosomal clustering. Science, 2005, 307: 127–129 1:CAS:528:DC%2BD2MXnvFWk, 10.1126/science.1104905, 15637283

    Article  PubMed  CAS  Google Scholar 

  5. Pihan G A, Purohit A, Wallace J, et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res, 1998, 58: 3974–3985 1:CAS:528:DyaK1cXlvVyqsrc%3D, 9731511

    PubMed  CAS  Google Scholar 

  6. Pihan G A, Purohit A, Wallace J, et al. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res, 2001, 61: 2212–2219 1:CAS:528:DC%2BD3MXit1Ogtro%3D, 11280789

    PubMed  CAS  Google Scholar 

  7. Pihan G A, Wallace J, Zhou Y, et al. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res, 2003, 63: 1398–1404 1:CAS:528:DC%2BD3sXit1SgurY%3D, 12649205

    PubMed  CAS  Google Scholar 

  8. Sluder G, Nordberg J J. The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol, 2004, 16: 49–54 1:CAS:528:DC%2BD2cXitlSms7w%3D, 10.1016/j.ceb.2003.11.006, 15037304

    Article  PubMed  CAS  Google Scholar 

  9. Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol, 2005, 15: 303–311 1:CAS:528:DC%2BD2MXlt1Srtrk%3D, 10.1016/j.tcb.2005.04.008, 15953548

    Article  PubMed  CAS  Google Scholar 

  10. Hinchcliffe E H, Sluder G. “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev, 2001, 15: 1167–1181 1:CAS:528:DC%2BD3MXktVansrY%3D, 10.1101/gad.894001, 11358861

    Article  PubMed  CAS  Google Scholar 

  11. Scholey J M, Brust-Mascher I, Mogilner A. Cell division. Nature, 2003, 422: 746–752 1:CAS:528:DC%2BD3sXivFGhsbw%3D, 10.1038/nature01599, 12700768

    Article  PubMed  CAS  Google Scholar 

  12. Fu J, Bian M, Jiang Q, et al. Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res, 2007, 5: 1–10 1:CAS:528:DC%2BD2sXptFeqtw%3D%3D, 10.1158/1541-7786.MCR-06-0208, 17259342

    Article  PubMed  CAS  Google Scholar 

  13. Cleveland D W. NuMA: a protein involved in nuclear structure, spindle assembly, and nuclear re-formation. Trends Cell Biol, 1995, 5: 60–64 1:CAS:528:DyaK2MXktFOisrw%3D, 10.1016/S0962-8924(00)88947-3, 14731413

    Article  PubMed  CAS  Google Scholar 

  14. Garrett S, Auer K, Compton D A, et al. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr Biol, 2002, 12: 2055–2059 1:CAS:528:DC%2BD38XpsFehurk%3D, 10.1016/S0960-9822(02)01277-0, 12477396

    Article  PubMed  CAS  Google Scholar 

  15. Karsenti E, Vernos I. The mitotic spindle: a self-made machine. Science, 2001, 294: 543–547 1:CAS:528:DC%2BD3MXnslOntbw%3D, 10.1126/science.1063488, 11641489

    Article  PubMed  CAS  Google Scholar 

  16. Paoletti A, Giocanti N, Favaudon V, et al. Pulse treatment of interphasic HeLa cells with nanomolar doses of docetaxel affects centrosome organization and leads to catastrophic exit of mitosis. J Cell Sci, 1997, 110: 2403–2415 1:CAS:528:DyaK2sXnt1Giur8%3D, 9410879

    PubMed  CAS  Google Scholar 

  17. De Brabander M, Geuens G, Nuydens R, et al. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci USA, 1981, 78: 5608–5612 10.1073/pnas.78.9.5608, 6117858

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jordan M A, Toso R J, Thrower D, et al. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA, 1993, 90: 9552–9556 1:CAS:528:DyaK3sXms1aisrg%3D, 10.1073/pnas.90.20.9552, 8105478

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Jordan M A, Wendell K, Gardiner S, et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res, 1996, 56: 816–825 1:CAS:528:DyaK28XhtVClsbo%3D, 8631019

    PubMed  CAS  Google Scholar 

  20. Chen J G, Horwitz S B. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res, 2002, 62: 1935–1938 1:CAS:528:DC%2BD38XivVyltLg%3D, 11929805

    PubMed  CAS  Google Scholar 

  21. Ikui A E, Yang C P, Matsumoto T, et al. Low concentrations of taxol cause mitotic delay followed by premature dissociation of p55CDC from Mad2 and BubR1 and abrogation of the spindle checkpoint, leading to aneuploidy. Cell Cycle, 2005, 4: 1385–1388 1:CAS:528:DC%2BD28XjvFOmsbc%3D, 16138009

    Article  PubMed  CAS  Google Scholar 

  22. Xiong Y, Huo Y, Chen C, et al. Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways. J Biol Chem, 2009, 284: 23217–23224 1:CAS:528:DC%2BD1MXhtVWqtrnK, 10.1074/jbc.M109.019679, 19570985

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Shi Q, and King R W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature, 2005, 437: 1038–1042 1:CAS:528:DC%2BD2MXhtV2ktrnO, 10.1038/nature03958, 16222248

    Article  PubMed  CAS  Google Scholar 

  24. Schatz C A, Santarella R, Hoenger A, et al. Importin alpha-regulated nucleation of microtubules by TPX2. Embo J, 2003, 22: 2060–2070 1:CAS:528:DC%2BD3sXjsVKmur8%3D, 10.1093/emboj/cdg195, 12727873

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Anand S, Penrhyn-Lowe S, Venkitaraman A R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell, 2003, 3: 51–62 1:CAS:528:DC%2BD3sXhtFamt7Y%3D, 10.1016/S1535-6108(02)00235-0, 12559175

    Article  PubMed  CAS  Google Scholar 

  26. Kufer T A, Sillje H H, Korner R, et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol, 2002, 158: 617–623 1:CAS:528:DC%2BD38XmsVSntbo%3D, 10.1083/jcb.200204155, 12177045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Marumoto T, Zhang D, Saya H. Aurora-A—a guardian of poles. Nature reviews, 2005, 5: 42–50 1:CAS:528:DC%2BD2MXlvVen, 10.1038/nrc1526, 15630414

    PubMed  CAS  Google Scholar 

  28. Torres K, Horwitz S B. Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res, 1998, 58: 3620–3626 1:CAS:528:DyaK1cXlsFajt7o%3D, 9721870

    PubMed  CAS  Google Scholar 

  29. Hornick J E, Bader J R, Tribble E K, et al. Live-cell analysis of mitotic spindle formation in taxol-treated cells. Cell Motil Cytoskeleton, 2008, 65: 595–613 10.1002/cm.20283, 18481305

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sotillo R, Hernando E, Diaz-Rodriguez E, et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 2007, 11: 9–23 1:CAS:528:DC%2BD2sXhtFKmt74%3D, 10.1016/j.ccr.2006.10.019, 17189715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Weaver B A, Silk A D, Montagna C, et al. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 2007, 11: 25–36 1:CAS:528:DC%2BD2sXhtFClsLs%3D, 10.1016/j.ccr.2006.12.003, 17189716

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuanMao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, M., Fu, J., Yan, Y. et al. Short exposure to paclitaxel induces multipolar spindle formation and aneuploidy through promotion of acentrosomal pole assembly. Sci. China Life Sci. 53, 1322–1329 (2010). https://doi.org/10.1007/s11427-010-4086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4086-1

Keywords

Navigation