Skip to main content
Log in

The regulation effect of AMPK in immune related diseases

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a key role in energetic metabolism regulation. Metabolic changes in immune cells, such as dendritic cell (DC), macrophages, neutrophils and lymphocytes that participate in the signal directed programs that promote or inhibit immune mediated diseases, including cancer, atherosclerosis and inflammatory diseases. Multiple pathogenic mechanisms are involved in the initiation and progression of disease, and many pathways have been uncovered. The mechanistic overlap in the metabolic changes and inflammation could indicate that some of the targets they have are in common, whereas AMPK could be useful in treatment of both disorders. The insight into identification of AMPK responsible for specific immune regulation, anti-inflammatory actions and understanding of the underlying molecular mechanism will promote the generation of novel AMPK activators, and provide novel therapy strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, A.K., Murphy, K.M., and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature 383, 787–793.

    Article  PubMed  CAS  Google Scholar 

  • Abdel Malik, R., Zippel, N., Frömel, T., Heidler, J., Zukunft, S., Walzog, B., Ansari, N., Pampaloni, F., Wingert, S., Rieger, M.A., Wittig, I., Fisslthaler, B., and Fleming, I. (2017). AMP-activated protein kinase a2 in neutrophils regulates vascular repair via hypoxia-inducible factor-1a and a network of proteins affecting metabolism and apoptosisnovelty and significance. Circ Res 120, 99–109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahn, J., Lee, H., Kim, S., Park, J., and Ha, T. (2008). The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373, 545–549.

    Article  PubMed  CAS  Google Scholar 

  • Alba, G., El Bekay, R., Álvarez-Maqueda, M., Chacón, P., Vega, A., Monteseirín, J., Santa María, C., Pintado, E., Bedoya, F.J., Bartrons, R., and Sobrino, F. (2004). Stimulators of AMP-activated protein kinase inhibit the respiratory burst in human neutrophils. FEBS Lett 573, 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Auffray, C., Sieweke, M.H., and Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27, 669–692.

    Article  PubMed  CAS  Google Scholar 

  • Bae, H.B., Zmijewski, J.W., Deshane, J.S., Tadie, J.M., Chaplin, D.D., Takashima, S., and Abraham, E. (2011). AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. FASEB J 25, 4358–4368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bae, Y.A., and Cheon, H.G. (2016). Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages. Korean J Physiol Pharmacol 20, 415–424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai, A., Ma, A.G., Yong, M., Weiss, C.R., Ma, Y., Guan, Q., Bernstein, C.N., and Peng, Z. (2010a). AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem Pharmacol 80, 1708–1717.

    Article  PubMed  CAS  Google Scholar 

  • Bai, A., Yong, M., Ma, A.G., Ma, Y., Weiss, C.R., Guan, Q., Bernstein, C.N., and Peng, Z. (2010b). Novel anti-inflammatory action of 5-aminoimidazole- 4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis. J Pharmacol Exp Therapeutics 333, 717–725.

    Article  CAS  Google Scholar 

  • Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K. (2000). Immunobiology of dendritic cells. Annu Rev Immunol 18, 767–811.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, W.E., and Cohn, Z.A. (1966). The isolation and selected properties of blood monocytes. J Exp Med 123, 145–160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhavsar, S.K., Schmidt, S., Bobbala, D., Nurbaeva, M.K., Hosseinzadeh, Z., Merches, K., Fajol, A., Wilmes, J., and Lang, F. (2013). AMPKa1-sensitivity of orai1 and Ca2+ entry in T-lymphocytes. Cell Physiol Biochem 32, 687–698.

    Article  PubMed  CAS  Google Scholar 

  • Blagih, J., Coulombe, F., Vincent, E.E., Dupuy, F., Galicia-Vázquez, G., Yurchenko, E., Raissi, T.C., van der Windt, G.J.W., Viollet, B., Pearce, E.L., Pelletier, J., Piccirillo, C.A., Krawczyk, C.M., Divangahi, M., and Jones, R.G. (2015). The energy sensor ampk regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54.

    Article  PubMed  CAS  Google Scholar 

  • Blagih, J., Krawczyk, C.M., and Jones, R.G. (2012). LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Immunol Rev 249, 59–71.

    Article  PubMed  CAS  Google Scholar 

  • Carling, D. (2004). The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci 29, 18–24.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., Li, J., and Zhu, H. (2016). AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway. Vasc Pharmacol 85, 1–10.

    Article  CAS  Google Scholar 

  • Chiang, C.F., Chao, T.T., Su, Y.F., Hsu, C.C., Chien, C.Y., Chiu, K.C., Shiah, S.G., Lee, C.H., Liu, S.Y., and Shieh, Y.S. (2017). Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-kappaB signaling. Oncotarget 8, 20706–20718.

    PubMed  PubMed Central  Google Scholar 

  • Choi, H.C., Song, P., Xie, Z., Wu, Y., Xu, J., Zhang, M., Dong, Y., Wang, S., Lau, K., and Zou, M.H. (2008). Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J Biol Chem 283, 20186–20197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comalada, M., Camuesco, D., Sierra, S., Ballester, I., Xaus, J., Gálvez, J., and Zarzuelo, A. (2005). In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur J Immunol 35, 584–592.

    Article  PubMed  CAS  Google Scholar 

  • Condeelis, J., and Pollard, J.W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.R., Luo, W., Zeller, K., Shimoda, L., Topalian, S.L., Semenza, G.L., Dang, C.V., Pardoll, D.M., and Pan, F. (2011). Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding, L., Liang, G., Yao, Z., Zhang, J., Liu, R., Chen, H., Zhou, Y., Wu, H., Yang, B., and He, Q. (2015). Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget 6, 36441–36455.

    PubMed  PubMed Central  Google Scholar 

  • El-Mir, M.Y., Nogueira, V., Fontaine, E., Avéret, N., Rigoulet, M., and Leverve, X. (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275, 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Fracchia, K.M., Pai, C.Y., and Walsh, C.M. (2013). Modulation of T cell metabolism and function through calcium signaling. Front Immunol 4, 324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galdieri, L., Gatla, H., Vancurova, I., and Vancura, A. (2016). Activation of AMP-activated protein kinase by metformin induces protein acetylation in prostate and ovarian cancer cells. J Biol Chem 291, 25154–25166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geissmann, F., Auffray, C., Palframan, R., Wirrig, C., Ciocca, A., Campisi, L., Narni-Mancinelli, E., and Lauvau, G. (2008). Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol 86, 398–408.

    Article  PubMed  CAS  Google Scholar 

  • Geissmann, F., Jung, S., and Littman, D.R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Göransson, O., McBride, A., Hawley, S.A., Ross, F.A., Shpiro, N., Foretz, M., Viollet, B., Hardie, D.G., and Sakamoto, K. (2007). Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 282, 32549–32560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gualdoni, G.A., Mayer, K.A., Goschl, L., Boucheron, N., Ellmeier, W., and Zlabinger, G.J. (2016). The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J 30, 3800–3809.

    Article  PubMed  CAS  Google Scholar 

  • Guma, M., Wang, Y., Viollet, B., and Liu-Bryan, R. (2015). AMPK activation by A-769662 controls IL-6 expression in inflammatory arthritis. PLoS ONE 10, e0140452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardie, D.G., and Hawley, S.A. (2001). AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23, 1112–1119.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, S.A., Boudeau, J., Reid, J.L., Mustard, K.J., Udd, L., Mäkelä, T.P., Alessi, D.R., and Hardie, D.G. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawley, S.A., Pan, D.A., Mustard, K.J., Ross, L., Bain, J., Edelman, A.M., Frenguelli, B.G., and Hardie, D.G. (2005). Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2, 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, S.A., Ross, F.A., Chevtzoff, C., Green, K.A., Evans, A., Fogarty, S., Towler, M.C., Brown, L.J., Ogunbayo, O.A., Evans, A.M., and Hardie, D.G. (2010). Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11, 554–565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho, I.C., and Glimcher, L.H. (2002). Transcription. Cell 109, S109–S120.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, N., Matsumura, T., Kinoshita, H., Motoshima, H., Kojima, K., Tsutsumi, A., Kawasaki, S., Yano, M., Senokuchi, T., Asano, T., Nishikawa, T., and Araki, E. (2009). Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation. J Biol Chem 284, 34561–34569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jhun, B.S., Jin, Q., Oh, Y.T., Kim, S.S., Kong, Y., Cho, Y.H., Ha, J., Baik, H.H., and Kang, I. (2004). 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-a production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Biochem Biophys Res Commun 318, 372–380.

    Article  PubMed  CAS  Google Scholar 

  • Kang, K.Y., Kim, Y.K., Yi, H., Kim, J., Jung, H.R., Kim, I.J., Cho, J.H., Park, S.H., Kim, H.Y., and Ju, J.H. (2013). Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol 16, 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Kopsiaftis, S., Hegde, P., Taylor Iii, J.A., and Claffey, K.P. (2016). AMPKa is suppressed in bladder cancer through Macrophage-Mediated mechanisms. Transl Oncol 9, 606–616.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krawczyk, C.M., Holowka, T., Sun, J., Blagih, J., Amiel, E., DeBerardinis, R.J., Cross, J.R., Jung, E., Thompson, C.B., Jones, R.G., and Pearce, E.J. (2010). Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumase, F., Takeuchi, K., Morizane, Y., Suzuki, J., Matsumoto, H., Kataoka, K., Al-Moujahed, A., Maidana, D.E., Miller, J.W., and Vavvas, D.G. (2016). AMPK-activated protein kinase suppresses Ccr2 expression by inhibiting the NF-κB pathway in RAW264.7 macrophages. PLoS ONE 11, e0147279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, S., Jeong, S., Kim, W., Kim, D., Yang, Y., Yoon, J.H., Kim, B.J., Min, D.S., and Jung, Y. (2017a). Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5′-AMP-activated protein kinase. Biochem Biophys Res Commun 483, 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.Y., Lee, S.H., Yang, E.J., Kim, E.K., Kim, J.K., Shin, D.Y., and Cho, M.L. (2015). Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS ONE 10, e0135858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, S.Y., Moon, S.J., Kim, E.K., Seo, H.B., Yang, E.J., Son, H.J., Kim, J.K., Min, J.K., and Park, S.H., (2017b). Metformin suppresses systemic autoimmunity in roquinsan/san mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J Immunol 198, 2661–2670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, D., Wang, D., Wang, Y., Ling, W., Feng, X., and Xia, M. (2010). Adenosine monophosphate-activated protein kinase induces cholesterol efflux from macrophage-derived foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice. J Biol Chem 285, 33499–33509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, P., Fan, J.B., Gao, Y., Zhang, M., Zhang, L., Yang, N., and Zhao, X. (2016). miR-135b-5p inhibits LPS-induced TNFalpha production via silencing AMPK phosphatase Ppm1e. Oncotarget 7, 77978–77986.

    PubMed  PubMed Central  Google Scholar 

  • Li, Y., Xu, S., Jiang, B., Cohen, R.A., and Zang, M. (2013). Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs. PLoS ONE 8, e67532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Libby, P., Ridker, P.M., and Hansson, G.K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Wang, N., Fan, S., Zheng, X., Yang, Y., Zhu, Y., Lu, Y., Chen, Q., Zhou, H., and Zheng, J. (2016). The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway. Sci Rep 6, 39735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Cotarelo, P., Escribano-Díaz, C., González-Bethencourt, I.L., Gómez-Moreira, C., Deguiz, M.L., Torres-Bacete, J., Gómez-Cabañas, L., Fernández-Barrera, J., Delgado-Martín, C., Mellado, M., Regueiro, J.R., Miranda-Carús, M.E., and Rodríguez-Fernández, J.L. (2015). A novel MEK-ERK-AMPK signaling axis controls chemokine receptor CCR7-dependent survival in human mature dendritic cells. J Biol Chem 290, 827–840.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Fan, C., Yang, Y., Di, S., Hu, W., Li, T., Zhu, Y., Han, J., Xin, Z., Wu, G., Zhao, J., Li, X., and Yan, X. (2016). Thapsigargin sensitizes human esophageal cancer to TRAIL-induced apoptosis via AMPK activation. Sci Rep 6, 35196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mangalam, A.K., Rattan, R., Suhail, H., Singh, J., Hoda, M.N., Deshpande, M., Fulzele, S., Denic, A., Shridhar, V., Kumar, A., Viollet, B., Rodriguez, M., and Giri, S. (2016). AMP-activated protein kinase suppresses autoimmune central nervous system disease by regulating M1-type macrophage-Th17 axis. J Immunol 197, 747–760.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A., Denanglaire, S., Viollet, B., Leo, O., and Andris, F. (2008). AMPactivated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol 38, 948–956.

    Article  PubMed  CAS  Google Scholar 

  • Michalek, R.D., Gerriets, V.A., Jacobs, S.R., Macintyre, A.N., MacIver, N.J., Mason, E.F., Sullivan, S.A., Nichols, A.G., and Rathmell, J.C. (2011). Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186, 3299–3303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mooney, M.H., Fogarty, S., Stevenson, C., Gallagher, A.M., Palit, P., Hawley, S.A., Hardie, D.G., Coxon, G.D., Waigh, R.D., Tate, R.J., Harvey, A.L., and Furman, B.L. (2008). Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice. Br J Pharmacol 153, 1669–1677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray, P.J., and Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11, 723–737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nath, N., Giri, S., Prasad, R., Salem, M.L., Singh, A.K., and Singh, I. (2005). 5-Aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J Immunol 175, 566–574.

    Article  PubMed  CAS  Google Scholar 

  • Nath, N., Khan, M., Rattan, R., Mangalam, A., Makkar, R.S., de Meester, C., Bertrand, L., Singh, I., Chen, Y., Viollet, B., and Giri, S. (2009). Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity. Biochem Biophys Res Commun 386, 16–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nathan, C. (2002). Points of control in inflammation. Nature 420, 846–852.

    Article  PubMed  CAS  Google Scholar 

  • Newsholme, P., Curi, R., Gordon, S., and Newsholme, E.A. (1986). Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239, 121–125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu, Y., Dong, Q., and Li, R. (2017). Matrine regulates Th1/Th2 cytokine responses in rheumatoid arthritis by attenuating the NF-κB signaling. Cell Biol Int 41, 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Notarangelo, L.D. (2014). Combined immunodeficiencies with nonfunctional T lymphocytes. Adv Immunol 121, 121–190.

    Article  PubMed  CAS  Google Scholar 

  • Nurbaeva, M.K., Schmid, E., Szteyn, K., Yang, W., Viollet, B., Shumilina, E., and Lang, F. (2012). Enhanced Ca2+ entry and Na+/Ca2+ exchanger activity in dendritic cells from AMP-activated protein kinase-deficient mice. FASEB J 26, 3049–3058.

    Article  PubMed  CAS  Google Scholar 

  • Obba, S., Hizir, Z., Boyer, L., Selimoglu-Buet, D., Pfeifer, A., Michel, G., Hamouda, M.A., Gonçalvès, D., Cerezo, M., Marchetti, S., Rocchi, S., Droin, N., Cluzeau, T., Robert, G., Luciano, F., Robaye, B., Foretz, M., Viollet, B., Legros, L., Solary, E., Auberger, P., and Jacquel, A. (2015). The PRKAA1/AMPKa1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11, 1114–1129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oren, R., Farnham, A.E., Saito, K., Milofsky, E., and Karnovsky, M.L. (1963). Metabolic patterns in three types of phagocytizing cells. J Cell Biol 17, 487–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owen, M.R., Doran, E., and Halestrap, A.P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348, 607–614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, D.W., Jiang, S., Tadie, J.M., Stigler, W.S., Gao, Y., Deshane, J., Abraham, E., and Zmijewski, J.W. (2013). Activation of AMPK enhances neutrophil chemotaxis and bacterial killing. Mol Med 19, 1–398.

    Article  CAS  Google Scholar 

  • Pearce, E.L., Walsh, M.C., Cejas, P.J., Harms, G.M., Shen, H., Wang, L.S., Jones, R.G., and Choi, Y. (2009). Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao, E., Zhang, Y., Li, Q., Hao, J., Egilmez, N.K., Suttles, J., and Li, B. (2016). AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget 7, 33783–33795.

    PubMed  PubMed Central  Google Scholar 

  • Rao, E., Zhang, Y., Zhu, G., Hao, J., Persson, X.M.T., Egilmez, N.K., Suttles, J., and Li, B. (2015). Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget 6, 7944–7958.

    PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Prados, J.C., Traves, P.G., Cuenca, J., Rico, D., Aragones, J., Martin-Sanz, P., Cascante, M., and Bosca, L. (2010). Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185, 605–614.

    Article  PubMed  CAS  Google Scholar 

  • Rolf, J., Zarrouk, M., Finlay, D.K., Foretz, M., Viollet, B., and Cantrell, D.A. (2013). AMPKa1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol 43, 889–896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sag, D., Carling, D., Stout, R.D., and Suttles, J. (2008). Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181, 8633–8641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanders, M.J., Ali, Z.S., Hegarty, B.D., Heath, R., Snowden, M.A., and Carling, D. (2007). Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282, 32539–32548.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher, T.N.M., Gerlach, C., and van Heijst, J.W.J. (2010). Mapping the life histories of T cells. Nat Rev Immunol 10, 621–631.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R.J., Kosmatka, M., Bardeesy, N., Hurley, R.L., Witters, L.A., DePinho, R.A., and Cantley, L.C. (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101, 3329–3335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., and Chi, H. (2011). HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208, 1367–1376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi, Q., Yin, Z., Liu, P., Zhao, B., Zhang, Z., Mao, S., Wei, T., Rao, M., Zhang, L., and Wang, S. (2016). Cilostazol suppresses IL-23 production in human dendritic cells via an AMPK-dependent pathway. Cell Physiol Biochem 40, 499–508.

    Article  PubMed  CAS  Google Scholar 

  • Son, H.J., Lee, J., Lee, S.Y., Kim, E.K., Park, M.J., Kim, K.W., Park, S.H., and Cho, M.L. (2014). Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm 2014, 1–13.

    Article  CAS  Google Scholar 

  • Soraya, H., Rameshrad, M., Mokarizadeh, A., and Garjani, A. (2015). Metformin attenuates myocardial remodeling and neutrophil recruitment after myocardial infarction in rat. Bioimpacts 5, 3–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stefanelli, C., Stanic’, I., Bonavita, F., Flamigni, F., Pignatti, C., Guarnieri, C., and Caldarera, C.M. (1998). Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cellpermeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun 243, 821–826.

    Article  PubMed  CAS  Google Scholar 

  • Stout, R.D., and Suttles, J. (2004). Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukocyte Biol 76, 509–513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stuart, L.M., and Ezekowitz, R.A. (2008). Phagocytosis and comparative innate immunity: learning on the fly. Nat Rev Immunol 8, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Swirski, F.K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez-Retamozo, V., Panizzi, P., Figueiredo, J.L., Kohler, R.H., Chudnovskiy, A., Waterman, P., Aikawa, E., Mempel, T.R., Libby, P., Weissleder, R., and Pittet, M.J. (2009). Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tadie, J.M., Bae, H.B., Deshane, J.S., Bell, C.P., Lazarowski, E.R., Chaplin, D.D., Thannickal, V.J., Abraham, E., and Zmijewski, J.W. (2012). Toll-like receptor 4 engagement inhibits adenosine 5′-monophosphateactivated protein kinase activation through a high mobility group box 1 protein-dependent mechanism. Mol Med 18, 1–668.

    Article  CAS  Google Scholar 

  • Tamás, P., Hawley, S.A., Clarke, R.G., Mustard, K.J., Green, K., Hardie, D.G., and Cantrell, D.A. (2006). Regulation of the energy sensor AMPactivated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203, 1665–1670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamás, P., Macintyre, A., Finlay, D., Clarke, R., Feijoo-Carnero, C., Ashworth, A., and Cantrell, D. (2010). LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol 40, 242–253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang, Q., Wu, J.J., Zheng, F., Hann, S.S., and Chen, Y.Q. (2017). Emodin increases expression of insulin-like growth factor binding protein 1 through activation of MEK/ERK/AMPKa and interaction of PPAR? and Sp1 in lung cancer. Cell Physiol Biochem 41, 339–357.

    Article  PubMed  CAS  Google Scholar 

  • Trikha, P., Plews, R.L., Stiff, A., Gautam, S., Hsu, V., Abood, D., Wesolowski, R., Landi, I., Mo, X., Phay, J., Chen, C.S., Byrd, J., Caligiuri, M., Tridandapani, S., and Carson Iii, W.E. (2016). Targeting myeloid-derived suppressor cells using a novel adenosine monophosphate- activated protein kinase (AMPK) activator. Oncoimmunology 5, e1214787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai, K.L., Hung, C.H., Chan, S.H., Shih, J.Y., Cheng, Y.H., Tsai, Y.J., Lin, H.C., and Chu, P.M. (2016). Baicalein protects against oxLDL-caused oxidative stress and inflammation by modulation of AMPK-alpha. Oncotarget 7, 72458–72468.

    PubMed  PubMed Central  Google Scholar 

  • Vasamsetti, S.B., Karnewar, S., Kanugula, A.K., Thatipalli, A.R., Kumar, J.M., and Kotamraju, S. (2015). Metformin inhibits monocyte- to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes 64, 2028–2041.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Ma, A., Zhao, M., and Zhu, H. (2017). AMPK activation reduces the number of atheromata macrophages in ApoE deficient mice. Atherosclerosis 258, 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., and Green, D.R. (2012). Metabolic checkpoints in activated T cells. Nat Immunol 13, 907–915.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A., Cheung, P.C., Smith, F.C., Davison, M.D., Scott, J., Beri, R.K., and Carling, D. (1996a). Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro. J Biol Chem 271, 10282–10290.

    PubMed  CAS  Google Scholar 

  • Woods, A., Johnstone, S.R., Dickerson, K., Leiper, F.C., Fryer, L.G.D., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., and Carling, D. (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13, 2004–2008.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A., Salt, I., Scott, J., Hardie, D.G., and Carling, D. (1996b). The a1 and a2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett 397, 347–351.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y.H., Li, Q., Li, P., and Liu, B. (2016). GSK621 activates AMPK signaling to inhibit LPS-induced TNFa production. Biochem Biophys Res Commun 480, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, B., Heath, R., Saiu, P., Leiper, F.C., Leone, P., Jing, C., Walker, P.A., Haire, L., Eccleston, J.F., Davis, C.T., Martin, S.R., Carling, D., and Gamblin, S.J. (2007). Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500.

    Article  PubMed  CAS  Google Scholar 

  • Yan, H., Zhou, H.F., Hu, Y., and Pham, C.T. (2015). Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J Rheum Dis Treat 1, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Z., Kahn, B.B., Shi, H., and Xue, B.Z. (2010). Macrophage a1 AMPactivated protein kinase (a1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem 285, 19051–19059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zha, Q.B., Wei, H.X., Li, C.G., Liang, Y.D., Xu, L.H., Bai, W.J., Pan, H., He, X.H., and Ouyang, D.Y. (2016). ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Front Immunol 7, 597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhan, P., Zhao, S., Yan, H., Yin, C., Xiao, Y., Wang, Y., Ni, R., Chen, W., Wei, G., and Zhang, P. (2016). alpha-enolase promotes tumorigenesis and metastasis via regulating AMPK/mTOR pathway in colorectal cancer. Mol Carcinog 56, 1427–1437.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhu, H., Ding, Y., Liu, Z., Cai, Z., and Zou, M.H. (2017). AMP-activated protein kinase a1 promotes atherogenesis by increasing monocyte-to-macrophage differentiation. J Biol Chem 292, 7888–7903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, N., Hartig, H., Dzhagalov, I., Draper, D., and He, Y.W. (2005). The role of apoptosis in the development and function of T lymphocytes. Cell Res 15, 749–769.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, D., Long, X.D., Lu, T.F., Wang, T., Zhang, W.W., Liu, Y.X., Cui, X.L., Dai, H.J., Xue, F., and Xia, Q. (2015). Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int J Cancer 136, 2556–2565.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Zmijewski, J.W., Lorne, E., Liu, G., Park, Y.J., Tsuruta, Y., and Abraham, E. (2008). Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. AJPLung Cell Mol Physiol 295, L497–L504.

    Article  CAS  Google Scholar 

  • Zhou, J., Yang, Z., Tsuji, T., Gong, J., Xie, J., Chen, C., Li, W., Amar, S., and Luo, Z. (2011). LITAF and TNFSF15, two downstream targets of AMPK, exert inhibitory effects on tumor growth. Oncogene 30, 1892–1900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou, Y.F., Xie, C.W., Yang, S.X., and Xiong, J.P. (2017). AMPK activators suppress breast cancer cell growth by inhibiting DVL3-facilitated Wnt/β-catenin signaling pathway activity. Mol Med Rep 15, 899–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Innovation Team of Shanxi Province (201605D131045-18) and Key Laboratory of Effective Substances Research and Utilization in Traditional Chinese Medicine of Shanxi Province (201605D111004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibo Zhu or Xuemei Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, Z., Gao, L. et al. The regulation effect of AMPK in immune related diseases. Sci. China Life Sci. 61, 523–533 (2018). https://doi.org/10.1007/s11427-017-9169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9169-6

Keywords

Navigation