Skip to main content
Log in

Role of AMPK in atherosclerosis via autophagy regulation

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Atherosclerosis is characterized by the accumulation of lipids and deposition of fibrous elements in the vascular wall, which is the primary cause of cardiovascular diseases. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism that regulates multiple physiological processes, including lipid and glucose metabolism and the normalization of energy imbalances. Overwhelming evidence indicates that AMPK activation markedly attenuates atherosclerosis development. Autophagy inhibits cell apoptosis and inflammation and promotes cholesterol efflux and efferocytosis. Physiological autophagy is essential for maintaining normal cardiovascular function. Increasing evidence demonstrates that autophagy occurs in developing atherosclerotic plaques. Emerging evidence indicates that AMPK regulates autophagy via a downstream signaling pathway. The complex relationship between AMPK and autophagy has attracted the attention of many researchers because of this close relationship to atherosclerosis development. This review demonstrates the role of AMPK and autophagy in atherosclerosis. An improved understanding of this interrelationship will create novel preventive and therapeutic strategies for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abada, A., and Elazar, Z. (2014). Getting ready for building: signaling and autophagosome biogenesis. EMBO Rep 15, 839–852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alers, S., Löffler, A.S., Wesselborg, S., and Stork, B. (2012). Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32, 2–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almabrouk, T.A.M., Ewart, M.A., Salt, I.P., and Kennedy, S. (2014). Perivascular fat, AMP-activated protein kinase and vascular diseases. Br J Pharmacol 171, 595–617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beg, Z.H., Allmann, D.W., and Gibson, D.M. (1973). Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and with protein fractions of rat liver cytosol. Biochem Biophys Res Commun 54, 1362–1369.

    Article  PubMed  CAS  Google Scholar 

  • Boya, P., Reggiori, F., and Codogno, P. (2013). Emerging regulation and functions of autophagy. Nat Cell Biol 15, 713–720.

    Article  PubMed  CAS  Google Scholar 

  • Brito, P.M., Devillard, R., Nègre-Salvayre, A., Almeida, L.M., Dinis, T.C. P., Salvayre, R., and Augé, N. (2009). Resveratrol inhibits the mTOR mitogenic signaling evoked by oxidized LDL in smooth muscle cells. Atherosclerosis 205, 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, C.A., and Kim, K.H. (1973). Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 248, 378–380.

    PubMed  CAS  Google Scholar 

  • Chen, M.L., Yi, L., Jin, X., Liang, X.Y., Zhou, Y., Zhang, T., Xie, Q., Zhou, X., Chang, H., Fu, Y.J., et al. (2013). Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 9, 2033–2045.

    Article  PubMed  CAS  Google Scholar 

  • Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., et al. (2006). Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3, 403–416.

    Article  PubMed  CAS  Google Scholar 

  • Dai, X.Y., Zhao, M.M., Cai, Y., Guan, Q.C., Zhao, Y., Guan, Y., Kong, W., Zhu, W.G., Xu, M.J., and Wang, X. (2013). Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int 83, 1042–1051.

    Article  PubMed  CAS  Google Scholar 

  • De Meyer, G.R.Y., Grootaert, M.O.J., Michiels, C.F., Kurdi, A., Schrijvers, D.M., and Martinet, W. (2015). Autophagy in vascular disease. Circul Res 116, 468–479.

    Article  CAS  Google Scholar 

  • Dong, Y., Zhang, M., Liang, B., Xie, Z., Zhao, Z., Asfa, S., Choi, H.C., and Zou, M.H. (2010a). Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121, 792–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong, Y., Zhang, M., Wang, S., Liang, B., Zhao, Z., Liu, C., Wu, M., Choi, H.C., Lyons, T.J., and Zou, M.H. (2010b). Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes 59, 1386–1396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Düfer, M., Noack, K., Krippeit-Drews, P., and Drews, G. (2010). Activation of the AMP-activated protein kinase enhances glucose-stimulated insulin secretion in mouse β-cells. Islets 2, 156–163.

    Article  PubMed  Google Scholar 

  • Fan, X., Wang, J., Hou, J., Lin, C., Bensoussan, A., Chang, D., Liu, J., and Wang, B. (2015). Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. J Transl Med 13, 92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fleming, A., Noda, T., Yoshimori, T., and Rubinsztein, D.C. (2011). Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7, 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Galic, S., Fullerton, M.D., Schertzer, J.D., Sikkema, S., Marcinko, K., Walkley, C.R., Izon, D., Honeyman, J., Chen, Z.P., van Denderen, B.J., et al. (2011). Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 121, 4903–4915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghislat, G., Patron, M., Rizzuto, R., and Knecht, E. (2012). Withdrawal of essential amino acids increases autophagy by a pathway involving Ca2+/ calmodulin-dependent kinase kinase-β (CaMKK-β). J Biol Chem 287, 38625–38636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grootaert, M.O., da Costa Martins, P.A., Bitsch, N., Pintelon, I., De Meyer, G.R., Martinet, W., and Schrijvers, D.M. (2015). Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 11, 2014–2032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo, P., Lian, Z., Sheng, L., Wu, C., Gao, J., Li, J., Wang, Y., Guo, Y., and Zhu, H. (2012). The adenosine derivative 2′,3′,5′-tri-O-acetyl-N6-(3-hydroxylaniline) adenosine activates AMPK and regulates lipid metabolism in vitro and in vivo. Life Sci 90, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Habets, D.D.J., Coumans, W.A., El Hasnaoui, M., Zarrinpashneh, E., Bertrand, L., Viollet, B., Kiens, B., Jensen, T.E., Richter, E.A., Bonen, A., et al. (2009). Crucial role for LKB1 to AMPKa2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim Biophys Acta 1791, 212–219.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Pan, X.Y., Xu, Y., Xiao, Y., An, Y., Tie, L., Pan, Y., and Li, X.J. (2012). Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 8, 812–825.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D.G., and Pan, D.A. (2002). Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochm Soc Trans 30, 1064–1070.

    Article  CAS  Google Scholar 

  • He, J., Zhang, G., Pang, Q., Yu, C., Xiong, J., Zhu, J., and Chen, F. (2017). SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition. FEBS J 284, 1324–1337.

    Article  PubMed  CAS  Google Scholar 

  • Horman, S., Beauloye, C., Vertommen, D., Vanoverschelde, J.L., Hue, L., and Rider, M.H. (2003). Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2. J Biol Chem 278, 41970–41976.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L.Z., Fan, B.Y., Ma, A., Shaul, P.W., and Zhu, H.B. (2015). Inhibition of ABCA1 protein degradation promotes HDL cholesterol efflux capacity and RCT and reduces atherosclerosis in mice. J Lipid Res 56, 986–997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishii, N., Matsumura, T., Kinoshita, H., Motoshima, H., Kojima, K., Tsutsumi, A., Kawasaki, S., Yano, M., Senokuchi, T., Asano, T., et al. (2009). Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation. J Biol Chem 284, 34561–34569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong, H.W., Hsu, K.C., Lee, J.W., Ham, M., Huh, J.Y., Shin, H.J., Kim, W. S., and Kim, J.B. (2009). Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab 296, E955–E964.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, B.B., Alquier, T., Carling, D., and Hardie, D.G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1, 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.S., Montana, V., Jang, H.J., Parpura, V., and Kim, J. (2013). Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells. J Biol Chem 288, 22693–22705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura, T., Tomura, H., Sato, K., Ito, M., Matsuoka, I., Im, D.S., Kuwabara, A., Mogi, C., Itoh, H., Kurose, H., et al. (2010). Mechanism and Role of high density lipoprotein-induced activation of AMP-activated protein kinase in endothelial cells. J Biol Chem 285, 4387–4397.

    Article  PubMed  Google Scholar 

  • Krishan, S., Richardson, D.R., and Sahni, S. (2015). Adenosine monophosphate-activated kinase and its key role in catabolism: structure, regulation, biological activity, and pharmacological activation. Mol Pharmacol 87, 363–377.

    Article  PubMed  CAS  Google Scholar 

  • LaRocca, T.J., Henson, G.D., Thorburn, A., Sindler, A.L., Pierce, G.L., and Seals, D.R. (2012). Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol 590, 3305–3316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Guezennec, X., Brichkina, A., Huang, Y.F., Kostromina, E., Han, W., and Bulavin, D.V. (2012). Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 16, 68–80.

    Article  PubMed  CAS  Google Scholar 

  • Li, D., Zhang, Y., Ma, J., Ling, W., and Xia, M. (2010). Adenosine monophosphate activated protein kinase regulates ABCG1-mediated oxysterol efflux from endothelial cells and protects against hypercholesterolemia-induced endothelial dysfunction. Arterioscler Thromb Vasc Biol 30, 1354–1362.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Wang, Y., Wang, Y., Wen, X., Ma, X.N., Chen, W., Huang, F., Kou, J., Qi, L.W., Liu, B., et al. (2015). Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol 86, 62–74.

    Article  PubMed  CAS  Google Scholar 

  • Li, R., Ji, Z., Qin, H., Kang, X., Sun, B., Wang, M., Chang, C.H., Wang, X., Zhang, H., Zou, H., et al. (2014). Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome. ACS Nano 8, 10280–10292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao, X., Sluimer, J.C., Wang, Y., Subramanian, M., Brown, K., Pattison, J. S., Robbins, J., Martinez, J., and Tabas, I. (2012). Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 15, 545–553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maiuri, M.C., Grassia, G., Platt, A.M., Carnuccio, R., Ialenti, A., and Maffia, P. (2013). Macrophage autophagy in atherosclerosis. Mediators Inflamm 2013, 1–14.

    Article  CAS  Google Scholar 

  • Martinet, W., De Loof, H., and De Meyer, G.R.Y. (2014). mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis 233, 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Michiels, C.F., Fransen, P., De Munck, D.G., De Meyer, G.R.Y., and Martinet, W. (2015). Defective autophagy in vascular smooth muscle cells alters contractility and Ca2+ homeostasis in mice. Am J Physiol Heart Circul Physiol 308, H557–H567.

    Article  CAS  Google Scholar 

  • Motobayashi, Y., Izawa-Ishizawa, Y., Ishizawa, K., Orino, S., Yamaguchi, K., Kawazoe, K., Hamano, S., Tsuchiya, K., Tomita, S., and Tamaki, T. (2009). Adiponectin inhibits insulin-like growth factor-1-induced cell migration by the suppression of extracellular signal-regulated kinase 1/2 activation, but not Akt in vascular smooth muscle cells. Hypertens Res 32, 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Muller, C., Salvayre, R., Nègre-Salvayre, A., and Vindis, C. (2011). Oxidized LDLs trigger endoplasmic reticulum stress and autophagy: prevention by HDLs. Autophagy 7, 541–543.

    Article  PubMed  CAS  Google Scholar 

  • Noh, B.K., Lee, J.K., Jun, H., Lee, J.H., Jia, Y., Hoang, M.H., Kim, J.W., Park, K.H., and Lee, S.J. (2011). Restoration of autophagy by puerarin in ethanol-treated hepatocytes via the activation of AMP-activated protein kinase. Biochem Biophys Res Commun 414, 361–366.

    Article  PubMed  CAS  Google Scholar 

  • Novikova, D.S., Garabadzhiu, A.V., Melino, G., Barlev, N.A., and Tribulovich, V.G. (2015). AMP-activated protein kinase: structure, function, and role in pathological processes. Biochem Moscow 80, 127–144.

    Article  CAS  Google Scholar 

  • Nussenzweig, S.C., Verma, S., and Finkel, T. (2015). The role of autophagy in vascular biology. Circul Res 116, 480–488.

    Article  CAS  Google Scholar 

  • Okayasu, T., Tomizawa, A., Suzuki, K., Manaka, K., and Hattori, Y. (2008). PPARa activators upregulate eNOS activity and inhibit cytokine-induced NF-?B activation through AMP-activated protein kinase activation. Life Sci 82, 884–891.

    Article  PubMed  CAS  Google Scholar 

  • Ou, H., Huang, Z., Mo, Z., and Xiao, J. (2017). The characteristics and roles of advanced oxidation protein products in atherosclerosis. Cardiovasc Toxicol 17, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Ouimet, M., Franklin, V., Mak, E., Liao, X., Tabas, I., and Marcel, Y.L. (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13, 655–667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrovski, G., Ayna, G., Májai, G., Hodrea, J., Benko, S., Mádi, A., and Fésüs, L. (2011). Phagocytosis of cells dying through autophagy induces inflammasome activation and IL-1β release in human macrophages. Autophagy 7, 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Razani, B., Feng, C., Coleman, T., Emanuel, R., Wen, H., Hwang, S., Ting, J.P., Virgin, H.W., Kastan, M.B., and Semenkovich, C.F. (2012). Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15, 534–544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salabei, J.K., Balakumaran, A., Frey, J.C., Boor, P.J., Treinen-Moslen, M., and Conklin, D.J. (2012). Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy. Toxicol Appl Pharmacol 262, 265–272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salabei, J.K., Cummins, T.D., Singh, M., Jones, S.P., Bhatnagar, A., and Hill, B.G. (2013). PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem J 451, 375–388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanders, M.J., Grondin, P.O., Hegarty, B.D., Snowden, M.A., and Carling, D. (2007). Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403, 139–148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sathyanarayan, A., Mashek, M.T., and Mashek, D.G. (2017). ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep 19, 1–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan, H., Guo, D., Li, X., Zhao, X., Li, W., and Bai, X. (2014). From autophagy to senescence and apoptosis in Angiotensin II-treated vascular endothelial cells. APMIS 122, 985–992.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131–1135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinberg, G.R., and Kemp, B.E. (2009). AMPK in health and disease. Physiol Rev 89, 1025–1078.

    Article  PubMed  CAS  Google Scholar 

  • Sun, W., Lee, T.S., Zhu, M., Gu, C., Wang, Y., Zhu, Y., and Shyy, J.Y.J. (2006). Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114, 2655–2662.

    Article  PubMed  CAS  Google Scholar 

  • Tai, S., Hu, X.Q., Peng, D.Q., Zhou, S.H., and Zheng, X.L. (2016). The roles of autophagy in vascular smooth muscle cells. Int J Cardiol 211, 1–6.

    Article  PubMed  Google Scholar 

  • Takeda-Watanabe, A., Kitada, M., Kanasaki, K., and Koya, D. (2012). SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun 427, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Urbanek, T., Kuczmik, W., Basta-Kaim, A., and Gabryel, B. (2014). RETRACTED: rapamycin induces of protective autophagy in vascular endothelial cells exposed to oxygen-glucose deprivation. Brain Res 1553, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Vasamsetti, S.B., Karnewar, S., Kanugula, A.K., Thatipalli, A.R., Kumar, J. M., and Kotamraju, S. (2015). Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes 64, 2028–2041.

    Article  PubMed  CAS  Google Scholar 

  • Vindis, C. (2015). Autophagy: an emerging therapeutic target in vascular diseases. Br J Pharmacol 172, 2167–2178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, B., Zhong, Y., Huang, D., and Li, J. (2016). Macrophage autophagy regulated by miR-384-5p-mediated control of Beclin-1 plays a role in the development of atherosclerosis. Am J Transl Res 8, 606–614.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, N., Silver, D.L., Costet, P., and Tall, A.R. (2000). Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 275, 33053–33058.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Zhang, M., Torres, G., Wu, S., Ouyang, C., Xie, Z., and Zou, M. H. (2017). Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission. Diabetes 66, 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Weikel, K.A., Cacicedo, J.M., Ruderman, N.B., and Ido, Y. (2015). Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells. Am J Physiol Cell Physiol 308, C249–C263.

    Article  PubMed  CAS  Google Scholar 

  • Zhai, C., Cheng, J., Mujahid, H., Wang, H., Kong, J., Yin, Y., Li, J., Zhang, Y., Ji, X., and Chen, W. (2014). Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PLoS ONE 9, e90563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Cui, L.Q., Zhou, G.Z., Jing, H.J., Guo, Y.Q., and Sun, W.K. (2013). Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem 24, 903–911.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M., Zhu, H., Ding, Y., Liu, Z., Cai, Z., and Zou, M.H. (2017). AMPactivated protein kinase a1 promotes atherogenesis by increasing monocyte-to-macrophage differentiation. J Biol Chem 292, 7888–7903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y.L., Cao, Y.J., Zhang, X., Liu, H.H., Tong, T., Xiao, G.D., Yang, Y. P., and Liu, C.F. (2010). The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochem Biophys Res Commun 394, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Zou, M.H., Kirkpatrick, S.S., Davis, B.J., Nelson, J.S., Wiles, W.T., Schlattner, U., Neumann, D., Brownlee, M., Freeman, M.B., and Goldman, M.H. (2004). Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 279, 43940–43951.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81670401), the Natural Sciences Foundation of Hunan Province (2016JJ6133), the Scientific Research Innovation Program of Post-graduate in Hunan Province (CX2017B554), Zhengxiang Scholar (Xiangyang Tang) Program of the University of South China and The Construct Program of the Key Discipline in Hunan Province (Basic Medicine Sciences in University of South China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengsong Tang or Zhongcheng Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, H., Liu, C., Feng, W. et al. Role of AMPK in atherosclerosis via autophagy regulation. Sci. China Life Sci. 61, 1212–1221 (2018). https://doi.org/10.1007/s11427-017-9240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9240-2

Keywords

Navigation