Skip to main content
Log in

siRNA therapeutics: a clinical reality

  • Review
  • Special Topic: Noncoding RNA: from dark matter to bright star
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Since the revolutionary discovery of RNA interference (RNAi), a remarkable progress has been achieved in understanding and harnessing gene silencing mechanism; especially in small interfering RNA (siRNA) therapeutics. Despite its tremendous potential benefits, major challenges in most siRNA therapeutics remains unchanged—safe, efficient and target oriented delivery of siRNA. Twenty years after the discovery of RNAi, siRNA therapeutics finally charts its way into clinics. As we journey through the decades, we reminisce the history of siRNA discovery and its application in a myriad of disease treatments. Herein, we highlight the breakthroughs in siRNA therapeutics, with special feature on the first FDA approved RNAi therapeutics Onpattro (Patisiran) and the consideration of effective siRNA delivery system focusing on current siRNA nanocarrier in clinical trials. Lastly, we present some challenges and multiple barriers that are yet to be fully overcome in siRNA therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D., Gonzalez-Duarte, A., O’Riordan, W.D., Yang, C.C., Ueda, M., Kristen, A.V., Tournev, I., Schmidt, H.H., Coelho, T., Berk, J.L., et al. (2018). Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379, 11–21.

    CAS  PubMed  Google Scholar 

  • Akhtar, S., and Benter, I.F. (2007). Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 117, 3623–3632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aleku, M., Schulz, P., Keil, O., Santel, A., Schaeper, U., Dieckhoff, B., Janke, O., Endruschat, J., Durieux, B., Röder, N., et al. (2008). Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68, 9788–9798.

    CAS  PubMed  Google Scholar 

  • Alvarez, R., Elbashir, S., Borland, T., Toudjarska, I., Hadwiger, P., John, M., Roehl, I., Morskaya, S.S., Martinello, R., Kahn, J., et al. (2009). RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob Agents Chemother 53, 3952–3962.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ando, Y., Coelho, T., Berk, J.L., Cruz, M.W., Ericzon, B.G., Ikeda, S., Lewis, W.D., Obici, L., Planté-Bordeneuve, V., Rapezzi, C., et al. (2013). Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orpharnet J Rare Dis 8, 31.

    Google Scholar 

  • Bäumer, S., Bäumer, N., Appel, N., Terheyden, L., Fremerey, J., Schelhaas, S., Wardelmann, E., Buchholz, F., Berdel, W.E., and Müller-Tidow, C. (2015). Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin Cancer Res 21, 1383–1394.

    PubMed  Google Scholar 

  • Behlke, M.A. (2006). Progress towards in vivo use of siRNAs. Mol Ther 13, 644–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beloor, J., Zeller, S., Choi, C.S., Lee, S.K., and Kumar, P. (2015). Cationic cell-penetrating peptides as vehicles for siRNA delivery. Therap Deliv 6, 491–507.

    CAS  Google Scholar 

  • Birmingham, A., Anderson, E.M., Reynolds, A., Ilsley-Tyree, D., Leake, D., Fedorov, Y., Baskerville, S., Maksimova, E., Robinson, K., Karpilow, J., et al. (2006). 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Meth 3, 199–204.

    CAS  Google Scholar 

  • Bumcrot, D., Manoharan, M., Koteliansky, V., and Sah, D.W.Y. (2006). RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2, 711–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett, J.C., and Rossi, J.J. (2012). RNA-based therapeutics: current progress and future prospects. Chem Biol 19, 60–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett, J.C., Rossi, J.J., and Tiemann, K. (2011). Current progress of siRNA/shRNA therapeutics in clinical trials. Biotech J 6, 1130–1146.

    CAS  Google Scholar 

  • Cervantes, A., Alsina, M., Tabernero, J., Infante, J.R., LoRusso, P., Shapiro, G., Paz-Ares, L.G., Falzone, R., Hill, J., Cehelsky, J., et al. (2011). Phase I dose-escalation study of ALN-VSP02, a novel RNAi therapeutic for solid tumors with liver involvement. J Clin Oncol 29, 3025.

    Google Scholar 

  • Chipumuro, E., Siddiquee, Z., Ganesh, S., Shui, S., Shah, A., Kim, B., Chen, D., Pandya, P., Storr, R., Wang, W., et al. (2016). Abstract 2925: anti-tumor activity of a MYC-targeting dicer substrate siRNA in combination with BRD4/CDK7 inhibitors. Cancer Res 76, 2925.

    Google Scholar 

  • Cho, W.G., Albuquerque, R.J.C., Kleinman, M.E., Tarallo, V., Greco, A., Nozaki, M., Green, M.G., Baffi, J.Z., Ambati, B.K., De Falco, M., et al. (2009). Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci USA 106, 7137–7142.

    CAS  PubMed  Google Scholar 

  • Choung, S., Kim, Y.J., Kim, S., Park, H.O., and Choi, Y.C. (2006). Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun 342, 919–927.

    CAS  PubMed  Google Scholar 

  • Coelho, T., Adams, D., Silva, A., Lozeron, P., Hawkins, P.N., Mant, T., Perez, J., Chiesa, J., Warrington, S., Tranter, E., et al. (2013a). Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 369, 819–829.

    CAS  PubMed  Google Scholar 

  • Coelho, T., Maurer, M.S., and Suhr, O.B. (2013b). THAOS-the transthyretin amyloidosis outcomes survey: initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Curr Med Res Opin 29, 63–76.

    CAS  PubMed  Google Scholar 

  • Conceição, I., González-Duarte, A., Obici, L., Schmidt, H.H.J., Simoneau, D., Ong, M.L., and Amass, L. (2016). “Red-flag” symptom clusters in transthyretin familial amyloid polyneuropathy. J Peripher Nerv Syst 21, 5–9.

    PubMed  PubMed Central  Google Scholar 

  • Dana, H., Chalbatani, G.M., Mahmoodzadeh, H., Karimloo, R., Rezaiean, O., Moradzadeh, A., Mehmandoost, N., Moazzen, F., Mazraeh, A., Marmari, V., et al. (2017). Molecular Mechanisms and biological functions of siRNA. Inter J Biomed Sci 13, 48–57.

    Google Scholar 

  • Dang, C.V., Reddy, E.P., Shokat, K.M., and Soucek, L. (2017). Drugging the “undruggable” cancer targets. Nat Rev Cancer 17, 502–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson, B.L. (2003). Hepatic diseases—hitting the target with inhibitory RNAs. N Engl J Med 349, 2357–2359.

    CAS  PubMed  Google Scholar 

  • Davis, M.E. (2009). The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6, 659–668.

    CAS  PubMed  Google Scholar 

  • Davis, M.E., Zuckerman, J.E., Choi, C.H.J., Seligson, D., Tolcher, A., Alabi, C.A., Yen, Y., Heidel, J.D., and Ribas, A. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Fougerolles, A., Manoharan, M., Meyers, R., and Vornlocher, H.P. (2005). RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics. Methods Enzymol 392, 278–296.

    CAS  PubMed  Google Scholar 

  • de Fougerolles, A., Vornlocher, H.P., Maraganore, J., and Lieberman, J. (2007). Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6, 443–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Fougerolles, A.R. (2008). Delivery vehicles for small interfering RNA in vivo. Human Gene Ther 19, 125–132.

    CAS  Google Scholar 

  • Dejneka, N.S., Wan, S., Bond, O.S., Kornbrust, D.J., and Reich, S.J. (2008). Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes. Mol Vision 14, 997–1005.

    Google Scholar 

  • Demirjian, S., Ailawadi, G., Polinsky, M., Bitran, D., Silberman, S., Shernan, S.K., Burnier, M., Hamilton, M., Squiers, E., Erlich, S., et al. (2017). Safety and tolerability study of an intravenously administered small interfering ribonucleic acid (siRNA) post on-pump cardiothoracic surgery in patients at risk of acute kidney injury. Kidney Int Rep 2, 836–843.

    PubMed  PubMed Central  Google Scholar 

  • DeVincenzo, J., Lambkin-Williams, R., Wilkinson, T., Cehelsky, J., Nochur, S., Walsh, E., Meyers, R., Gollob, J., and Vaishnaw, A. (2010). A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA 107, 8800–8805.

    CAS  PubMed  Google Scholar 

  • Dunning, J., Sahr, F., Rojek, A., Gannon, F., Carson, G., Idriss, B., Massaquoi, T., Gandi, R., Joseph, S., Osman, H.K., et al. (2016). Experimental treatment of ebola virus disease with TKM-130803: a single-arm phase 2 clinical trial. PLoS Med 13, e1001997.

    PubMed  PubMed Central  Google Scholar 

  • Dykxhoorn, D.M., and Lieberman, J. (2005). The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56, 401–423.

    CAS  PubMed  Google Scholar 

  • Dykxhoorn, D.M., and Lieberman, J. (2006a). Knocking down disease with siRNAs. Cell 126, 231–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dykxhoorn, D.M., and Lieberman, J. (2006b). Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs. Annu Rev Biomed Eng 8, 377–402.

    CAS  PubMed  Google Scholar 

  • Elbakry, A., Zaky, A., Liebl, R., Rachel, R., Goepferich, A., and Breunig, M. (2009). Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett 9, 2059–2064.

    CAS  PubMed  Google Scholar 

  • Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    CAS  PubMed  Google Scholar 

  • Fire, A., Xu, S.Q., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    CAS  PubMed  Google Scholar 

  • Fitzgerald, K., Frank-Kamenetsky, M., Shulga-Morskaya, S., Liebow, A., Bettencourt, B.R., Sutherland, J.E., Hutabarat, R.M., Clausen, V.A., Karsten, V., Cehelsky, J., et al. (2014). Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 383, 60–68.

    CAS  PubMed  Google Scholar 

  • Foster, D.J., Brown, C.R., Shaikh, S., Trapp, C., Schlegel, M.K., Qian, K., Sehgal, A., Rajeev, K.G., Jadhav, V., Manoharan, M., et al. (2018). Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol Ther 26, 708–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garba, A.O., and Mousa, S.A. (2010). Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol Eye Dis 2, S4878–S4883.

    Google Scholar 

  • Gertz, M.A. (2017). Hereditary ATTR amyloidosis: burden of illness and diagnostic challenges. Am J Managed Care 23, S107–S112.

    Google Scholar 

  • Golan, T., Khvalevsky, E.Z., Hubert, A., Gabai, R.M., Hen, N., Segal, A., Domb, A., Harari, G., David, E.B., Raskin, S., et al. (2015). RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6, 24560–24570.

    PubMed  PubMed Central  Google Scholar 

  • Hamar, P., Song, E., Kökény, G., Chen, A., Ouyang, N., and Lieberman, J. (2004). Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sci USA 101, 1488314888.

    Google Scholar 

  • Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    CAS  PubMed  Google Scholar 

  • Hawkins, P.N., Ando, Y., Dispenzeri, A., Gonzalez-Duarte, A., Adams, D., and Suhr, O.B. (2015). Evolving landscape in the management of transthyretin amyloidosis. Ann Med 47, 625–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung, V., Guenthner-Biller, M., Bourquin, C., Ablasser, A., Schlee, M., Uematsu, S., Noronha, A., Manoharan, M., Akira, S., de Fougerolles, A., et al. (2005). Sequence-specific potent induction of IFN-a by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11, 263–270.

    CAS  PubMed  Google Scholar 

  • Jackson, A.L., Bartz, S.R., Schelter, J., Kobayashi, S.V., Burchard, J., Mao, M., Li, B., Cavet, G., and Linsley, P.S. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21, 635–637.

    CAS  PubMed  Google Scholar 

  • Jackson, A.L., Burchard, J., Schelter, J., Chau, B.N., Cleary, M., Lim, L., and Linsley, P.S. (2006). Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, A.L., and Linsley, P.S. (2010). Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9, 57–67.

    CAS  Google Scholar 

  • Jain, R.K., and Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7, 653–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffs, L.B., Palmer, L.R., Ambegia, E.G., Giesbrecht, C., Ewanick, S., and MacLachlan, I. (2005). A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm Res 22, 362–372.

    CAS  PubMed  Google Scholar 

  • Jeong, J.H., Mok, H., Oh, Y.K., and Park, T.G. (2009). siRNA conjugate delivery systems. Bioconj Chem 20, 5–14.

    CAS  Google Scholar 

  • Johnson, S.M., Connelly, S., Fearns, C., Powers, E.T., and Kelly, J.W. (2012). The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol 421, 185–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Judge, A.D., Sood, V., Shaw, J.R., Fang, D., McClintock, K., and MacLachlan, I. (2005). Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23, 457–462.

    CAS  PubMed  Google Scholar 

  • Kanasty, R., Dorkin, J.R., Vegas, A., and Anderson, D. (2013). Delivery materials for siRNA therapeutics. Nat Mater 12, 967–977.

    CAS  PubMed  Google Scholar 

  • Kariko, K., Bhuyan, P., Capodici, J., and Weissman, D. (2004). Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172, 6545–6549.

    CAS  PubMed  Google Scholar 

  • Kenski, D.M., Butora, G., Willingham, A.T., Cooper, A.J., Fu, W., Qi, N., Soriano, F., Davies, I.W., and Flanagan, W.M. (2012). siRNA-optimized modifications for enhanced in vivo activity. Mol Ther — Nucleic Acids 1, e5.

    PubMed  PubMed Central  Google Scholar 

  • Kleinman, M.E., Yamada, K., Takeda, A., Chandrasekaran, V., Nozaki, M., Baffi, J.Z., Albuquerque, R.J.C., Yamasaki, S., Itaya, M., Pan, Y., et al. (2008). Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koldehoff, M., and Elmaagacli, A.H. (2009). Therapeutic targeting of gene expression by siRNAs directed against BCR-ABL transcripts in a patient with imatinib-resistant chronic myeloid leukemia. Methods Mol Biol 487, 451–466.

    CAS  PubMed  Google Scholar 

  • Koldehoff, M., Kordelas, L., Beelen, D.W., and Elmaagacli, A.H. (2010). Small interfering RNA against BCR-ABL transcripts sensitize mutated T315I cells to nilotinib. Haematologica 95, 388–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosmas, C.E., Muñoz Estrella, A., Sourlas, A., Silverio, D., Hilario, E., Montan, P.D., and Guzman, E. (2018). Inclisiran: a new promising agent in the management of hypercholesterolemia. Diseases 6, 63.

    CAS  PubMed Central  Google Scholar 

  • Kumari, A., Kumar, V., and Yadav, S.K. (2011). Nanocarriers: a tool to overcome biological barriers in siRNA delivery. Expert Opin Biol Ther 11, 1327–1339.

    CAS  PubMed  Google Scholar 

  • Lam, J.K.W., Chow, M.Y.T., Zhang, Y., and Leung, S.W.S. (2015). siRNA versus miRNA as therapeutics for gene silencing. Mol Ther-Nucleic Acids 4, e252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landa, G., Amde, W., Doshi, V., Ali, A., McGevna, L., Gentile, R.C., Muldoon, T.O., Walsh, J.B., and Rosen, R.B. (2009). Comparative study of intravitreal bevacizumab (Avastin) versus ranibizumab (Lucentis) in the treatment of neovascular age-related macular degeneration. Ophthalmologica 223, 370–375.

    CAS  PubMed  Google Scholar 

  • Landen, C.N. Jr., Chavez-Reyes, A., Bucana, C., Schmandt, R., Deavers, M.T., Lopez-Berestein, G., and Sood, A.K. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65, 6910–6918.

    CAS  PubMed  Google Scholar 

  • Lanford R.E., W.C.I., Chavez D, Oropeza C, Chu Q, Hamilton H.L, McLach-lan A, Given B, Anzalone C.R, Lewis D L (2013). ARC-520 RNAi therapeutic reduces hepatitis B virus DNA, Santigen and eantigen in a chimpanzee with a very high viral titer: 1035. Hepatology 58.

  • Layzer, J.M., McCaffrey, A.P., Tanner, A.K., Huang, Z., Kay, M.A., and Sullenger, B.A. (2004). In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leachman, S.A., Hickerson, R.P., Schwartz, M.E., Bullough, E.E., Hutcherson, S.L., Boucher, K.M., Hansen, C.D., Eliason, M.J., Srivatsa, G.S., Kornbrust, D.J., et al. (2010). First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther 18, 442–446.

    CAS  PubMed  Google Scholar 

  • Lieberman, J., and Sharp, P.A. (2015). Harnessing RNA interference for therapy. JAMA 313, 1207–1208.

    CAS  PubMed  Google Scholar 

  • Lieberman, J., Song, E., Lee, S.K., and Shankar, P. (2003). Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends Mol Med 9, 397–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morell, A.G., Gregoriadis, G., Scheinberg, I.H., Hickman, J., and Ashwell, G. (1971). The role of sialic acid in determining the survival of gly-coproteins in the circulation. J Biol Chem 246, 1461–1467.

    CAS  PubMed  Google Scholar 

  • Morrissey, D.V., Blanchard, K., Shaw, L., Jensen, K., Lockridge, J.A., Dickinson, B., McSwiggen, J.A., Vargeese, C., Bowman, K., Shaffer, C.S., et al. (2005a). Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349–1356.

    CAS  PubMed  Google Scholar 

  • Morrissey, D.V., Lockridge, J.A., Shaw, L., Blanchard, K., Jensen, K., Breen, W., Hartsough, K., Machemer, L., Radka, S., Jadhav, V., et al. (2005b). Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23, 1002–1007.

    CAS  PubMed  Google Scholar 

  • Nair, J.K., Attarwala, H., Sehgal, A., Wang, Q., Aluri, K., Zhang, X., Gao, M., Liu, J., Indrakanti, R., Schofield, S., et al. (2017). Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucl Acids Res 45, 10969–10977.

    CAS  PubMed  Google Scholar 

  • Nair, J.K., Willoughby, J.L.S., Chan, A., Charisse, K., Alam, M.R., Wang, Q., Hoekstra, M., Kandasamy, P., Kel’in, A.V., Milstein, S., et al. (2014). Multivalent N-acetylgalactosamine-conjugated siRNA Localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 136, 16958–16961.

    CAS  PubMed  Google Scholar 

  • Northfelt, D.W., Hamburg, S.I., Borad, M.J., Seetharam, M., Curtis, K.K., Lee, P., Crowell, B., Vocila, L., Fredlund, P., Gilbert, M.J., et al. (2013). A phase I dose-escalation study of TKM-080301, a RNAi therapeutic directed against polo-like kinase 1 (PLK1), in patients with advanced solid tumors: expansion cohort evaluation of biopsy samples for evidence of pharmacodynamic effects of PLK1 inhibition. J Clin Oncol 31, TPS2621.

    Google Scholar 

  • Ozcan, G., Ozpolat, B., Coleman, R.L., Sood, A.K., and Lopez-Berestein, G. (2015). Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliver Rev 87, 108–119.

    CAS  Google Scholar 

  • Petrocca, F., and Lieberman, J. (2011). Promise and challenge of RNA Interference-based therapy for cancer. J Clin Oncol 29, 747–754.

    CAS  PubMed  Google Scholar 

  • Robbins, M., Judge, A., Ambegia, E., Choi, C., Yaworski, E., Palmer, L., McClintock, K., and MacLachlan, I. (2008). Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Human Gene Ther 19, 991–999.

    CAS  Google Scholar 

  • Robbins, M., Judge, A., and MacLachlan, I. (2009). siRNA and innate immunity. Oligonucleotides 19, 89–102.

    CAS  PubMed  Google Scholar 

  • Ryther, R.C.C., Flynt, A.S., Phillips, J.A., and Patton, J.G. (2005). siRNA therapeutics: big potential from small RNAs. Gene Ther 12, 5–11.

    CAS  PubMed  Google Scholar 

  • Sato, Y., Murase, K., Kato, J., Kobune, M., Sato, T., Kawano, Y., Takimoto, R., Takada, K., Miyanishi, K., Matsunaga, T., et al. (2008). Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26, 431–442.

    CAS  PubMed  Google Scholar 

  • Saw, P.E., Park, J., Jon, S., and Farokhzad, O.C. (2017). A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomed-Nanotechnol Biol Med 13, 713–722.

    CAS  Google Scholar 

  • Schluep, T., Lickliter, J., Hamilton, J., Lewis, D.L., Lai, C.L., Lau, J.Y., Locarnini, S.A., Gish, R.G., and Given, B.D. (2017). Safety, tolerability, and pharmacokinetics of ARC-520 injection, an RNA interference-based therapeutic for the treatment of chronic hepatitis B virus infection, in healthy volunteers. Clinl Pharm Drug Dev 6, 350–362.

    CAS  Google Scholar 

  • Semple, S.C., Judge, A.D., Robbins, M., Klimuk, S., Eisenhardt, M., Crosley, E., Leung, A., Kwok, R., Ambegia, E., McClintock, K., et al. (2011). Abstract 2829: preclinical characterization of TKM-080301, a lipid nanoparticle formulation of a small interfering RNA directed against polo-like kinase 1. Cancer Res 71, 2829.

    Google Scholar 

  • Sen, G.L., and Blau, H.M. (2006). A brief history of RNAi: the silence of the genes. FASEB J 20, 1293–1299.

    CAS  PubMed  Google Scholar 

  • Shankar, P., Manjunath, N., and Lieberman, J. (2005). The prospect of silencing disease using RNA interference. JAMA 293, 1367–1373.

    CAS  PubMed  Google Scholar 

  • Singerman, L. (2009). Combination therapy using the small interfering RNA bevasiranib. Retina 29, S49–S50.

    PubMed  Google Scholar 

  • Singh, M.S., and Peer, D. (2016). siRNA delivery: current trends and future perspectives. Therap Deliv 7, 51–53.

    CAS  Google Scholar 

  • Sioud, M. (2005). Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348, 1079–1090.

    CAS  PubMed  Google Scholar 

  • Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H., and Williams, B.R.G. (2003). Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5, 834–839.

    CAS  PubMed  Google Scholar 

  • Song, E., Lee, S.K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P., and Lieberman, J. (2003). RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9, 347–351.

    CAS  PubMed  Google Scholar 

  • Song, E., Zhu, P., Lee, S.K., Chowdhury, D., Kussman, S., Dykxhoorn, D. M., Feng, Y., Palliser, D., Weiner, D.B., Shankar, P., et al. (2005). Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23, 709–717.

    CAS  PubMed  Google Scholar 

  • Sorensen, B., Mant, T., Georgiev, P., Rangarajan, S., Pasi, K. J., Creagh, D., Bevan, D.H., Austin, S., Hay, C., Brand, B., et al., (2015). A subcutaneously administered investigational RNAi therapeutic (ALN-AT3) targeting antithrombin for treatment of hemophilia: phase 1 study results in subjects with hemophilia A or B ISTH 2015.

    Google Scholar 

  • Sorensen, B., Mant, T., Akinc, A., Simon, A., Melton, L., Lynam, C., Strahs, A., Sehgal, A., Hutabarat, R., Chaturvedi, P., et al. (2014). A subcutaneously administered RNAi therapeutic (ALN-AT3) targeting antithrombin for treatment of hemophilia: interim phase 1 study results in healthy volunteers and patients with hemophilia A or B. Blood 124, 693.

    Google Scholar 

  • Soucek, L., and Evan, G.I. (2010). The ups and downs of Myc biology. Curr Opin Genets Dev 20, 91–95.

    CAS  Google Scholar 

  • Soule, B., Tirucherai, G., Kavita, U., Kundu, S., and Christian, R. (2018). Safety, tolerability, and pharmacokinetics of BMS-986263/ND-L02-s0201, a novel targeted lipid nanoparticle delivering HSP47 siRNA, in healthy participants: a randomised, placebo-controlled, double-blind, phase 1 study. J Hepatol 68, S112.

    Google Scholar 

  • Springer, A.D., and Dowdy, S.F. (2018). GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucl Acid Therap 28, 109–118.

    CAS  Google Scholar 

  • Steinbacher, J.L., and Landry, C.C. (2014). Adsorption and release of siRNA from porous silica. Langmuir 30, 4396–4405.

    CAS  PubMed  Google Scholar 

  • Stepien, K.E., Rosenfeld, P.J., Puliafito, C.A., Feuer, W., Shi, W., Al-Attar, L., Dubovy, S.R., Murray, T.G., Davis, J.L., Lee, W.H., et al. (2009). Comparison of intravitreal bevacizumab followed by ranibizumab for the treatment of neovascular age-related macular degeneration. Retina 29, 1067–1073.

    PubMed  Google Scholar 

  • Strumberg, D., Schultheis, B., Meyer-Sabellek, W., Vank, C., Gebhardt, F., Santel, A., Keil, O., Giese, K., Kaufmann, J., and Drevs, J. (2012a). Antimetastatic activity of Atu027, a liposomal small interfering RNA formulation, targeting protein kinase N3 (PKN3): final results of a phase I study in patients with advanced solid tumors. J Clin Oncol 30, e13597.

    Google Scholar 

  • Strumberg, D., Schultheis, B., Traugott, U., Vank, C., Santel, A., Keil, O., Giese, K., Kaufmann, J., and Drevs, J. (2012b). Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int J Clin Pharmacol Ther 50, 76–78.

    CAS  PubMed  Google Scholar 

  • Tabernero, J., Shapiro, G.I., LoRusso, P.M., Cervantes, A., Schwartz, G.K., Weiss, G.J., Paz-Ares, L., Cho, D.C., Infante, J.R., Alsina, M., et al. (2013). First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3, 406–417.

    CAS  PubMed  Google Scholar 

  • Tadin-Strapps, M., Peterson, L.B., Cumiskey, A.M., Rosa, R.L., Mendoza, V.H., Castro-Perez, J., Puig, O., Zhang, L., Strapps, W.R., Yendluri, S., et al. (2011). siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids. J Lipid Res 52, 1084–1097.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tagalakis, A.D., Lee, D.H.D., Bienemann, A.S., Zhou, H., Munye, M.M., Saraiva, L., McCarthy, D., Du, Z., Vink, C.A., Maeshima, R., et al. (2014). Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery. Biomaterials 35, 8406–8415.

    CAS  PubMed  Google Scholar 

  • Terrazas, M., and Kool, E.T. (2009). RNA major groove modifications improve siRNA stability and biological activity. Nucl Acids Res 37, 346–353.

    CAS  PubMed  Google Scholar 

  • Tolcher, A.W., Papadopoulos, K.P., Patnaik, A., Rasco, D.W., Martinez, D., Wood, D.L., Fielman, B., Sharma, M., Janisch, L.A., Brown, B.D., et al. (2015). Safety and activity of DCR-MYC, a first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors. J Clin Oncol 33, 1100611006.

    Google Scholar 

  • Vaishnaw, A.K., Gollob, J., Gamba-Vitalo, C., Hutabarat, R., Sah, D., Meyers, R., de Fougerolles, T., and Maraganore, J. (2010). A status report on RNAi therapeutics. Silence 1, 14.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Liu, S., Zhang, G., Zhou, C., Zhu, H., Zhou, X., Quan, L., Bai, J., and Xu, N. (2005). Knockdown ofc-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res 7, R220–R228.

    CAS  PubMed  Google Scholar 

  • Whitehead, K.A., Langer, R., and Anderson, D.G. (2009). Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8, 129–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, B.R. (2005). Targeting specific cell types with silencing RNA. N Engl J Med 353, 1410–1411.

    CAS  PubMed  Google Scholar 

  • Wittrup, A., and Lieberman, J. (2015). Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16, 543–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X., Saw, P.E., Tao, W., Li, Y., Ji, X., Yu, M., Mahmoudi, M., Rasmussen, J., Ayyash, D., Zhou, Y., et al. (2017). Tumor microenvironment-responsive multistaged nanoplatform for systemic NAi and cancer therapy. Nano Lett 17, 4427–4435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X., Wu, J., Liu, Y., Yu, M., Zhao, L., Zhu, X., Bhasin, S., Li, Q., Ha, E., Shi, J., et al. (2016). Ultra-pH-responsive and tumor-penetrating nanoplatform for targeted siRNA delivery with robust anti-cancer efficacy. Anrgew Chem Int Ed 55, 7091–7094.

    CAS  Google Scholar 

  • Yuen, M.F., Chan, H.L.Y., Given, B., Hamilton, J., Schluep, T., Lewis, D. L., Lai, C.L., Locarnini, S., Lau, J.Y., Gish, R.G. (2014). Phase II, dose ranging study of ARC-520, a siRNA-based therapeutic, in patients with chronic hepatitis B virus infection. Hepatology 60, 1280A.

    Google Scholar 

  • Zamora, M.R., Budev, M., Rolfe, M., Gottlieb, J., Humar, A., Devincenzo, J., Vaishnaw, A., Cehelsky, J., Albert, G., Nochur, S., et al. (2011). RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am J Respir Crit Care Med 183, 531–538.

    CAS  PubMed  Google Scholar 

  • Zatsepin, T.S., Kotelevtsev, Y.V., and Koteliansky, V. (2016). Lipid nanoparticles for targeted siRNA delivery-going from bench to bedside. IJN Volume 11, 3077–3086.

    CAS  PubMed  Google Scholar 

  • Zhang, L., Liang, D., Chen, C., Wang, Y., Amu, G., Yang, J., Yu, L., Dmochowski, I.J., and Tang, X. (2018). Circular siRNAs for reducing off-target effects and enhancing long-term gene silencing in cells and mice. Mol Ther — Nucleic Acids 10, 237–244.

    CAS  PubMed  Google Scholar 

  • Zimmermann, T., Karsten, V., Harrop, J., Chan, A., Chiesa, J., Peters, G., Falzone, R., Cehelsky, J., Nochur, S., Vaishnaw, A., et al. (2013). Phase I first-in-humans trial of ALN-TTRsc, a novel RNA interference therapeutic for the treatment of familial amyloidotic cardiomyopathy (FAC). J Cardiac Failure 19, S66.

    Google Scholar 

  • Zimmermann, T.S., Lee, A.C.H., Akinc, A., Bramlage, B., Bumcrot, D., Fedoruk, M.N., Harborth, J., Heyes, J.A., Jeffs, L.B., John, M., et al. (2006). RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114.

    CAS  PubMed  Google Scholar 

  • Zuckerman, J.E., and Davis, M.E. (2015). Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drg Discov 14, 843–856.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFC1302300), the National Natural Science Foundation of China (81720108029, 81621004, and 81490750), Guangdong Science and Technology Department (2016B030229004), Guangzhou Science Technology and Innovation Commission (201803040015), and the Fountain-Valley Life Sciences Fund of University of Chinese Academy of Sciences Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Er-Wei Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saw, P.E., Song, EW. siRNA therapeutics: a clinical reality. Sci. China Life Sci. 63, 485–500 (2020). https://doi.org/10.1007/s11427-018-9438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9438-y

Navigation