Skip to main content
Log in

Local Heating Control of Plasmonic Nanoparticles for Different Incident Lights and Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper investigates the nanoscale control of heating processes in the Au nanostructures from the aspects of light sources, nanoparticle morphologies, multi-layer Au shells, and nanoparticle dimers. The spatiotemporal evolution of the temperature profile inside and around the Au nanoparticles is computed using a numerical framework based on the finite element method. One-temperature model and two-temperature model are used for the calculation of continuous-wave and picosecond pulse laser, respectively. Results show that the maximum temperature increase is linear with the laser energy density, the slopes of which are various for continuous-wave laser and picosecond pulse laser. For the Au cube, ellipsoid, ring, and sphere with the same volume, the maximum resonance wavelengths locate in ~ 580 nm, 610 nm, 500 nm, and 530 nm, respectively. The trend of the maximum temperature increase agrees well with the absorption cross section. With increasing the number of the shell, a red shift occurs from 665 to 690 nm and the total absorption cross section also increases. What needs to be emphasized is that it does not need to heat the surrounding environment while the core region remains a very high temperature, which is very interesting and suitable for photothermal applications such as photothermal catalysis and nanoreaction oven. For the nanoshell dimers, it can be heated selectively by adjusting the incident angle and light wavelength for this dimer system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shi Y, Yang S, Xing D (2017) New insight into photoacoustic conversion efficiency by plasmon-mediated nanocavitation: implications for precision theranostics. Nano Res 10:2800–2809. https://doi.org/10.1007/s12274-017-1483-9

    Article  Google Scholar 

  2. Chen G, Gao R, Zhao Y, Li Z, Waterhouse GIN, Shi R, Zhao J, Zhang M, Shang L, Sheng G, Zhang X, Wen X, Wu LZ, Tung CH, Zhang T (2018) Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv Mater 30:1–8. https://doi.org/10.1002/adma.201704663

    Article  CAS  Google Scholar 

  3. Xia Y, Ma X, Gao J, Chen G, Li Z, Wu X, Yu Z, Xing J, Sun L, Ruan H, Luo L, Xiang L, Dong C, Ren W, Shen Z, Wu A (2018) A flexible caterpillar-like gold nanoparticle assemblies with ultrasmall nanogaps for enhanced dual-modal imaging and photothermal therapy. Small 1800094:1–13. https://doi.org/10.1002/smll.201800094

    Article  CAS  Google Scholar 

  4. Neumann O, Neumann AD, Silva E, Ayala-Orozco C, Tian S, Nordlander P, Halas NJ (2015) Nanoparticle-mediated, light-induced phase separations. Nano Lett 15:7880–7885. https://doi.org/10.1021/acs.nanolett.5b02804

    Article  CAS  PubMed  Google Scholar 

  5. Chen M, He Y, Huang J, Zhu J (2017) Investigation into Au nanofluids for solar photothermal conversion. Int J Heat Mass Transf 108:1894–1900. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.005

    Article  CAS  Google Scholar 

  6. Chen M, He Y, Zhu J (2017) Preparation of Au–Ag bimetallic nanoparticles for enhanced solar photothermal conversion. Int J Heat Mass Transf 114:1098–1104. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.005

    Article  CAS  Google Scholar 

  7. Wang Z, Zhang ZM, Quan X, Cheng P (2018) A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies. Int J Heat Mass Transf 116:825–832. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.014

    Article  CAS  Google Scholar 

  8. Wang X, He Y, Liu X, Cheng G, Zhu J (2017) Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl Energy 195:414–425. https://doi.org/10.1016/j.apenergy.2017.03.080

    Article  CAS  Google Scholar 

  9. Wang X, He Y, Chen M, Hu Y (2018) ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors. Sol Energy Mater Sol Cells 179:185–193. https://doi.org/10.1016/j.solmat.2017.11.012

    Article  CAS  Google Scholar 

  10. Qi C, Hu J, Liu M, Guo L, Rao Z (2017) Experimental study on thermo-hydraulic performances of CPU cooled by nanofluids. Energy Convers Manag 153:557–565. https://doi.org/10.1016/j.enconman.2017.10.041

    Article  CAS  Google Scholar 

  11. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791. https://doi.org/10.1039/b711490g

    Article  CAS  PubMed  Google Scholar 

  12. Hu M, Hartland G V (2002) Heat dissipation for Au particles in aqueous solution: relaxation time versus size. 7029–7033

  13. Richardson HH, Hickman ZN, Govorov AO, Thomas AC, Zhang W, Kordesch ME (2006) Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. Nano Lett 6:783–788. https://doi.org/10.1021/nl060105l

    Article  CAS  PubMed  Google Scholar 

  14. Baffou G, Girard C, Quidant R (2010) Mapping heat origin in plasmonic structures. Phys Rev Lett 104:1–4. https://doi.org/10.1103/PhysRevLett.104.136805

    Article  CAS  Google Scholar 

  15. Baffou G, Quidant R, García De Abajo FJ (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4:709–716. https://doi.org/10.1021/nn901144d

    Article  CAS  PubMed  Google Scholar 

  16. Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6:2550–2557. https://doi.org/10.1021/nn2050032

    Article  CAS  PubMed  Google Scholar 

  17. Hatef A, Fortin-Deschênes S, Boulais E, Lesage F, Meunier M (2015) Photothermal response of hollow gold nanoshell to laser irradiation: continuous wave, short and ultrashort pulse. Int J Heat Mass Transf 89:866–871. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.071

    Article  CAS  Google Scholar 

  18. Zhao J, Pinchuk AO, Mcmahon JM et al (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Chem Soc Rev 41:1710–1720

    CAS  Google Scholar 

  19. Chen M, He Y, Wang X, Hu Y (2018) Complementary enhanced solar thermal conversion performance of core-shell nanoparticles. Appl Energy 211:735–742. https://doi.org/10.1016/j.apenergy.2017.11.087

    Article  CAS  Google Scholar 

  20. Chen M, He Y, Wang X, Hu Y (2018) Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating. Sol Energy 161:17–24. https://doi.org/10.1016/j.solener.2017.12.032

    Article  CAS  Google Scholar 

  21. Guo L, Hodson SL, Fisher TS, Xu X (2012) Heat transfer across metal-dielectric interfaces during ultrafast-laser heating. J Heat Transf 134:042402. https://doi.org/10.1115/1.4005255

    Article  CAS  Google Scholar 

  22. Lin Z, Zhigilei LV, Celli V (2008) Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B - Condens Matter Mater Phys 77:1–17. https://doi.org/10.1103/PhysRevB.77.075133

    Article  CAS  Google Scholar 

  23. Plech A, Kotaidis V, Grésillon S, Dahmen C, von Plessen G (2004) Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Phys Rev B - Condens Matter Mater Phys 70:1–7. https://doi.org/10.1103/PhysRevB.70.195423

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51676060), the Natural Science Funds of Heilongjiang Province for Distinguished Young Scholars (Grant No. JC2016009), and the Science Creative Foundation for Distinguished Young Scholars in Harbin (Grant No. 2014RFYXJ004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., He, Y., Hu, Y. et al. Local Heating Control of Plasmonic Nanoparticles for Different Incident Lights and Nanoparticles. Plasmonics 14, 1893–1902 (2019). https://doi.org/10.1007/s11468-019-00990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00990-1

Keywords

Navigation