Skip to main content
Log in

Side population cells in human gallbladder cancer cell line GBC-SD regulated by TGF-β-induced epithelial-mesenchymal transition

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Mounting evidence has shown that side population (SP) cells are enriched for cancer stem cells (CSCs) responsible for cancer malignancy. In this study, SP technology was used to isolate a small subpopulation of SP cells in human gallbladder cancer cell line GBC-SD, and SP cells which had superior potential for proliferation in vitro and tumorigenesis in vivo were identified. Importantly, the abundance of GBC-SD SP cells was increased by a transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT), and this effect was accompanied with a strong up-regulation of ABCG2 mRNA expression, and a decreased sensitivity to mitoxantrone. SP cells were restored upon the removal of TGF-β and the reversion of the cells to an epithelial phenotype, and smad3-specific siRNA reduced SP abundance in response to TGF-β. In conclusion, TGF-β-induced EMT by smad-dependent signaling pathway promotes cancer development and anti-cancer drug resistant phenotype by augmenting the abundance of GBC-SD SP cells, and a better understanding of mechanisms involved in TGF-β-induced EMT may provide a novel strategy for preventing cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan KM, Yeh TS, Yu MC, et al. Gallbladder carcinoma with biliary invasion: clinical analysis of the differences from nonbiliary invasion. World J Surg, 2005,29(1):72–75

    Article  PubMed  Google Scholar 

  2. Kayahara M, Nagakawa T. Recent trends of gallbladder cancer in Japan: an analysis of 4,770 patients. Cancer, 2007,110(3):572–580

    Article  PubMed  Google Scholar 

  3. Yee K, Sheppard BC, Domreis J, et al. Cancers of the gallbladder and biliary ducts. Oncology (Williston Park), 2002,16(7):939–946, 949; discussion 949–950, 952–953, 956–957

    Google Scholar 

  4. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res, 2007,67(3):1030–1037

    Article  PubMed  CAS  Google Scholar 

  5. O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007,445(7123):106–110

    Article  PubMed  Google Scholar 

  6. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature, 2001,414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  7. Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res, 2006,66(17):8319–8326

    Article  PubMed  CAS  Google Scholar 

  8. Tsuji T, Ibaragi S, Hu GF. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res, 2009,69(18):7135–7139

    Article  PubMed  CAS  Google Scholar 

  9. Kudo-Saito C, Shirako H, Takeuchi T, et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 2009,15(3):195–206

    Article  PubMed  CAS  Google Scholar 

  10. Komuro A, Yashiro M, Iwata C, et al. Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor beta signaling. J Natl Cancer Inst, 2009,101(8):592–604

    Article  PubMed  CAS  Google Scholar 

  11. Kiyono K, Suzuki HI, Morishita Y, et al. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma. Cancer Sci, 2009,100(10):1809–1816

    Article  PubMed  CAS  Google Scholar 

  12. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003,425(6958):577–584

    Article  PubMed  CAS  Google Scholar 

  13. Arumugam T, Ramachandran V, Fournier KF, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res, 2009,69(14): 5820–5828

    Article  PubMed  CAS  Google Scholar 

  14. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci, 2007,98(10):1512–1520

    Article  PubMed  CAS  Google Scholar 

  15. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 2005,24(37):5764–5774

    Article  PubMed  CAS  Google Scholar 

  16. Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 2001,23(10):912–923

    Article  PubMed  CAS  Google Scholar 

  17. Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med, 1996,183(4): 1797–1806

    Article  PubMed  CAS  Google Scholar 

  18. Yeh YC, Wang CZ, Tang MJ. Discoidin domain receptor 1 activation suppresses alpha2beta1 integrin-dependent cell spreading through inhibition of Cdc42 activity. J Cell Physiol, 2009,218(1):146–156

    Article  PubMed  CAS  Google Scholar 

  19. Wulf GG, Luo KL, Jackson KA, et al. Cells of the hepatic side population contribute to liver regeneration and can be replenished with bone marrow stem cells. Haematologica, 2003,88(4):368–378

    PubMed  Google Scholar 

  20. Goodell MA. Multipotential stem cells and “side population” cells. Cytotherapy, 2002,4(6):507–508

    Article  PubMed  CAS  Google Scholar 

  21. Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol, 2003,15(6): 740–746

    Article  PubMed  CAS  Google Scholar 

  22. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002,2(6):442–454

    Article  PubMed  CAS  Google Scholar 

  23. Ho MM, Ng AV, Lam S, et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res, 2007,67(10):4827–4833

    Article  PubMed  CAS  Google Scholar 

  24. Miettinen PJ, Ebner R, Lopez AR, et al. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol, 1994,127(6 Pt 2):2021–2036

    Article  PubMed  CAS  Google Scholar 

  25. Gal A, Sjoblom T, Fedorova L, et al. Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene, 2008,27(9): 1218–1230

    Article  PubMed  CAS  Google Scholar 

  26. Roberts AB, Tian F, Byfield SD, et al. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev, 2006, 17(1–2):19–27

    Article  PubMed  CAS  Google Scholar 

  27. Saika S, Kono-Saika S, Tanaka T, et al. Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. Lab Invest, 2004,84(10):1245–1258

    Article  PubMed  CAS  Google Scholar 

  28. Saika S, Kono-Saika S, Ohnishi Y, et al. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am J Pathol, 2004,164(2):651–663

    Article  PubMed  CAS  Google Scholar 

  29. Sato M, Muragaki Y, Saika S, et al. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest, 2003,112(10):1486–1494

    PubMed  CAS  Google Scholar 

  30. Gauldie J, Kolb M, Ask K, et al. Smad3 signaling involved in pulmonary fibrosis and emphysema. Proc Am Thorac Soc, 2006,3(8):696–702

    Article  PubMed  CAS  Google Scholar 

  31. Zhao J, Shi W, Wang YL, et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol, 2002,282(3): L585–593

    PubMed  CAS  Google Scholar 

  32. Fukaya R, Ohta S, Yamaguchi M, et al. Isolation of cancer stem-like cells from a side population of a human glioblastoma cell line, SK-MG-1. Cancer Lett, 2010, 291(2):150–157

    Article  PubMed  CAS  Google Scholar 

  33. Kai K, D’Costa S, Yoon BI, et al. Characterization of side population cells in human malignant mesothelioma cell lines. Lung Cancer, 2010,70(2):146–151

    Article  PubMed  Google Scholar 

  34. Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 2006,24(3):506–513

    Article  PubMed  CAS  Google Scholar 

  35. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008,133(4):704–715

    Article  PubMed  CAS  Google Scholar 

  36. Mishra L, Derynck R, Mishra B. Transforming growth factor-beta signaling in stem cells and cancer. Science, 2005,310(5745):68–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyi Qin  (秦仁义).

Additional information

The authors contributed equally to this work.

This project was supported by a grant from the National Natural Science Foundation of China (No. 30772127).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zhu, F., Xiao, L. et al. Side population cells in human gallbladder cancer cell line GBC-SD regulated by TGF-β-induced epithelial-mesenchymal transition. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 31, 749–755 (2011). https://doi.org/10.1007/s11596-011-0671-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-011-0671-1

Key words

Navigation