Skip to main content

Advertisement

Log in

Transplantation of engineered bone tissue using a rotary three-dimensional culture system

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Bone is a complex, highly structured, mechanically active, three-dimensional (3-D) tissue composed of cellular and matrix elements. We previously published a report on in situ collagen gelation using a rotary 3-D culture system (CG–RC system) for the construction of large tissue specimens. The objective of the current study was to evaluate the feasibility of bone tissue engineering using our CG–RC system. Osteoblasts from the calvaria of newborn Wistar rats were cultured in the CG–RC system for up to 3 wk. The engineered 3-D tissues were implanted into the backs of nude mice and calvarial round bone defects in Wistar rats. Cell metabolic activity, mineralization, and bone-related proteins were measured in vitro in the engineered 3-D tissues. Also, the in vivo histological features of the transplanted, engineered 3-D tissues were evaluated in the animal models. We found that metabolic activity increased in the engineered 3-D tissues during cultivation, and that sufficient mineralization occurred during the 3 wk in the CG–RC system in vitro. One mo posttransplantation, the transplants to nude mice remained mineralized and were well invaded by host vasculature. Of particular interest, 2 mo posttransplantation, the transplants into the calvarial bone defects of rats were replaced by new mature bone. Thus, this study shows that large 3-D osseous tissue could be produced in vitro and that the engineered 3-D tissue had in vivo osteoinductive potential when transplanted into ectopic locations and into bone defects. Therefore, this system should be a useful model for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Baker, T. L.; Goodwin, T. J. Three-dimensional culture of bovine chondrocytes in rotating-wall vessels. In Vitro Cell Dev Biol Anim 33:358–365; 1997

    PubMed  CAS  Google Scholar 

  • Chung, C.-H.; Golub, F. E.; Forbes, E.; Tokuoka, T.; Shapiro, I. M. Mechanism of action of β−glycerophosphate on bone cell mineralization. Calcif Tissue Int 51:305–311; 1992

    Article  PubMed  CAS  Google Scholar 

  • Dahl, L. K. A simple and sensitive histochemical method for calcium. Proc Soc Exp Biol Med 80:474–479; 1952

    PubMed  CAS  Google Scholar 

  • Doolin, E. J.; Geldziler, B.; Strande, L.; Kain, M.; Hewitt, C. Effects of microgravity on growing cultured skin constructs. Tissue Eng 5:573–582; 1999

    Article  PubMed  CAS  Google Scholar 

  • Eiselt, P.; Kim, B. S.; Chacko, B.; Isenberg, B.; Peters, M. C.; Greene, K. G.; Roland, W. D.; Loebsack, A. B.; Burg, K. J.; Culberson, C.; Halberstadt, C. R.; Holder, W. D.; Mooney, D. J. Development of technologies aiding large-tissue engineering. Biotechnol Prog 14:134–140; 1998

    Article  PubMed  CAS  Google Scholar 

  • Ferrera, D.; Poggi, S.; Biassoni, C.; Dickson, G. R.; Astigiano, S.; Barbieri, O.; Favre, A.; Franzi, A. T.; Strangio, A.; Federici, A.; Manduca, P. Three-dimensional cultures of normal human osteoblasts: proliferation and differentiation potential in vitro and upon ectopic implantation in nude mice. Bone 30:718–725; 2002

    Article  PubMed  CAS  Google Scholar 

  • Freed, L. E.; Vunjak-Novakovic, G. Microgravity tissue engineering. In Vitro Cell Dev Biol Anim 33:381–385; 1997

    PubMed  CAS  Google Scholar 

  • Freed, L. E.; Hollander, A. P.; Martin, I.; Barry, J. R.; Langer, R.; Vunjak-Novakovic, G. Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res 240:58–65; 1998

    Article  PubMed  CAS  Google Scholar 

  • Freeman, E.; Turnbull, R. S. The value of osseous coagulum as a graft material. J Periodontal Res 8:229–236; 1973

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, A. S.; Juarez, T. M.; Helmke, C. D.; Gustin, M. C.; Mikos, A. G. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288; 2001

    Article  PubMed  CAS  Google Scholar 

  • Granet, C.; Laroche. N.; Vico, L.; Alexandre, C.; Lafage-Proust, M. H. Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med Biol Eng Comput 36:513–519; 1998

    Article  PubMed  CAS  Google Scholar 

  • Gronowicz, G.; Woodiel, F. N.; McCarthy, M. B.; Raisz, L. G. In vitro mineralization of fetal rat parietal bones in defined serum-free medium: effect of β-glycerol phosphate. J Bone Miner Res 4(3):313–324; 1989

    Article  PubMed  CAS  Google Scholar 

  • Hollinger, J. O.; Kleinschmidt, J. C. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1(1):60–68; 1990

    Article  PubMed  CAS  Google Scholar 

  • Inoda, H.; Yamamoto, G.; Hattori, T. Histological investigation of osteoinductive properties of rh-BMP2 in a rat calvarial bone defect model. J Craniomaxillofac Surg 32(6):365–369; 2004

    PubMed  Google Scholar 

  • Khouja, H. I.; Bevington, A.; Kemp, G. J.; Russell, R. G. Calcium and orthophosphate deposits in vitro do not imply osteoblast-mediated mineralization: mineralization by betaglycerophosphate in the absence of osteoblasts. Bone 11:385–391; 1990

    Article  PubMed  CAS  Google Scholar 

  • Klement, B. J.; Spooner, B. S. Utilization of microgravity bioreactors for differentiation of mammalian skeletal tissue. J Cell Biochem 51:252–256; 1993

    Article  PubMed  CAS  Google Scholar 

  • Klement, B. J.; Young, Q. M.; George, B. J.; Nokkaew, M. Skeletal tissue growth, differentiation and mineralization in the NASA rotating wall vessel. Bone 34:478–498; 2004

    Article  Google Scholar 

  • Langer, R.; Vacanti, J. P. Tissue engineering. Science 260:920–926; 1993

    Article  PubMed  CAS  Google Scholar 

  • Molnar, G.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell Dev Biol Anim 33:386–391; 1997

    PubMed  CAS  Google Scholar 

  • Mulliken, J. B.; Glowacki, J. Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg 65:553–560; 1980

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa, K.; Neo, M.; Matsuoka, H.; Akiyama, H.; Ito, H.; Kohno, H.; Nakamura, T. The expression of bone matrix protein mRNAs around beta-TCP particles implanted into bone. J Biomed Mater Res 52:460–466; 2000

    Article  PubMed  CAS  Google Scholar 

  • Parikh, S. N. Bone graft substitutes: past, present, future. J Postgrad Med 48:142–148; 2002

    PubMed  CAS  Google Scholar 

  • Pei, M.; Solchaga, L. A.; Seidel, J.; Zeng, L.; Vunjak-Novakovic, G.; Caplan, A. I.; Freed, L. E. Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J 16:1691–1694; 2002

    PubMed  CAS  Google Scholar 

  • Qiu, Q. Q.; Ducheyne, P.; Ayyaswamy, P. S. 3D bone tissue engineered with bioactive microspheres in simulated microgravity. In Vitro Cell Dev Biol Anim 37:157–165; 2001

    Article  PubMed  CAS  Google Scholar 

  • Rattner, A.; Sabido, O.; Le, J.; Vico, L.; Massoubrem, C.; Frey, J.; Chamson, A. Mineralization and alkaline phosphatase activity in collagen lattices populated by human osteoblasts. Calcif Tissue Int 66:35–42; 2000

    Article  PubMed  CAS  Google Scholar 

  • Sarber, R.; Hull, B.; Merrill, C.; Soranno, T.; Bell, E. Regulation of proliferation of fibroblasts of low and high population doubling levels grown in collagen lattices. Mech Ageing Dev 17:107–117; 1981

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, J. P.; Hollinger, J. O. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:299–308; 1986

    PubMed  Google Scholar 

  • Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods 14:51–57; 1992

    Article  PubMed  CAS  Google Scholar 

  • Sikavitsas, V. I.; Bancroft, G. N.; Mikos, A. G. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 62:136–148; 2002

    Article  PubMed  CAS  Google Scholar 

  • Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43; 1969

    Article  PubMed  CAS  Google Scholar 

  • Su, GN-C.; Hidaka, M.; Kimura, Y.; Yamamoto, G. In situ collagen gelation: a new method for constructing large tissue in rotary culture vessels. In Vitro Cell Dev Biol Anim 39:368–374; 2003

    Article  PubMed  Google Scholar 

  • Yamaguchi, A.; Komori, T.; Suda, T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21:393–441; 2000

    Article  PubMed  CAS  Google Scholar 

  • Yu, X.; Botchwey, E. A.; Levine, E. M.; Pollack, S. R.; Laurencin, C. T. Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci U S A 101(31):11203–11208; 2004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Mr. T. Yamamoto in the Central Research Laboratory, Shiga University of Medical Science, Japan for his excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoko Hidaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidaka, M., Su, G.NC., Chen, J.KH. et al. Transplantation of engineered bone tissue using a rotary three-dimensional culture system. In Vitro Cell.Dev.Biol.-Animal 43, 49–58 (2007). https://doi.org/10.1007/s11626-006-9005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-006-9005-1

Keywords

Navigation