Skip to main content

Advertisement

Log in

Methodology for the formation of functional, cell-based cardiac pressure generation constructs in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We have previously described a model to engineer three-dimensional (3-D) heart muscle in vitro. In the current study, we extend our model of 3-D heart muscle to engineer a functional cell-based cardiac pressure generating construct (CPGC). Tubular constructs were fabricated utilizing a phase separation method with chitosan as the scaffolding material. Primary cardiac cells isolated from rat hearts were plated on the surface of fibrin gels cast in 35 mm tissue culture dishes. CPGCs (N = 8) were formed by anchoring the tubular constructs to the center of the plate with primary cardiac cells seeded in fibrin gels wrapped around the tubular constructs. Intraluminal pressure measurements were evaluated with and without external electrical stimulation and histological evaluation performed. The fibrin gel spontaneously compacted due to the traction force of the cardiac cells. By 14 d after original cell plating, the cardiac cells had completely formed a monolayer around the tubular construct resulting in the formation of a cell-based CPGC. The spontaneous contractility of the CPGC was macroscopically visible and resulted in intraluminal pressure spikes of 0.08 mmHg. Upon electrical stimulation, the CPGCs generated twitch pressures of up to 0.05 mmHg. In addition, the CPGC constructs were electrically paced at frequencies of up to 3 Hz. Histological evaluation showed the presence of a continuous cell monolayer around the surface of the tubular construct. In this study, we describe a novel in vitro method to engineer functional cell-based CPGCs and demonstrate several physiological metrics of functional performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

References

  • Akins R. E.; Boyce R. A.; Madonna M. L.; Schroedl N. A.; Gonda S. R.; McLaughlin T. A.; et al. Cardiac organogenesis in vitro: Reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng. 5(2): 103–118; 1999, Apr.

    Article  PubMed  CAS  Google Scholar 

  • Baar K.; Birla R.; Boluyt M. O.; Borschel G. H.; Arruda E. M.; Dennis R. G. Heart muscle by design: Self-organization of rat cardiac cells into contractile 3-D cardiac tissue. FASEB J. 19: 275–277; 2005.

    PubMed  CAS  Google Scholar 

  • Boluyt M. O.; Zheng J. S.; Younes A.; Long X.; O’Neill L.; Silverman H.; et al. Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ. Res. 81(2): 176–186; 1997, Aug.

    PubMed  CAS  Google Scholar 

  • Carrier R. L.; Papadaki M.; Rupnick M.; Schoen F. J.; Bursac N.; Langer R.; et al. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 64(5): 580–589; 1999, Sep 5.

    Article  PubMed  CAS  Google Scholar 

  • Chung T. W.; Yang J.; Akaike T.; Cho K. Y.; Nah J. W.; Kim S. I.; et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 23(14): 2827–2834; 2002, Jul.

    Article  PubMed  CAS  Google Scholar 

  • Cui W.; Kim D. H.; Imamura M.; Hyon S. H.; Inoue K. Tissue-engineered pancreatic islets: culturing rat islets in the chitosan sponge. Cell Transplant 10(4–5): 499–502; 2001.

    PubMed  CAS  Google Scholar 

  • Dennis R. G.; Kosnik P. E. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell. Dev. Biol., Anim. 36(5): 327–335; 2000, May.

    Article  CAS  Google Scholar 

  • Dennis R. G.; Kosnik P. E.; Gilbert M. E.; Faulkner J. A. Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am. J. Physiol., Cell Physiol. 280(2): C288–C295; 2001, Feb.

    PubMed  CAS  Google Scholar 

  • Eschenhagen T.; Fink C.; Remmers U.; Scholz H.; Wattchow J.; Weil J.; et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: A new heart muscle model system. FASEB J. 11(8): 683–694; 1997, Jul.

    PubMed  CAS  Google Scholar 

  • Itoh S.; Suzuki M.; Yamaguchi I.; Takakuda K.; Kobayashi H.; Shinomiya K.; et al. Development of a nerve scaffold using a tendon chitosan tube. Artif. Organs 27(12): 1079–1088; 2003, Dec.

    Article  PubMed  Google Scholar 

  • Khor E.; Lim L. Y. Implantable applications of chitin and chitosan. Biomaterials 24(13): 2339–2349; 2003, Jun.

    Article  PubMed  CAS  Google Scholar 

  • Langer R.; Vacanti J. P. Tissue engineering. Science 260(5110): 920–926; 1993, May 14.

    Article  PubMed  CAS  Google Scholar 

  • Li R. K.; Yau T. M.; Weisel R. D.; Mickle D. A.; Sakai T.; Choi A.; et al. Construction of a bioengineered cardiac graft. J. Thorac. Cardiovasc. Surg. 119(2): 368–375; 2000, Feb.

    Article  PubMed  CAS  Google Scholar 

  • Ma J.; Wang H.; He B.; Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 22(4): 331–336; 2001, Feb.

    Article  PubMed  CAS  Google Scholar 

  • Madihally S. V.; Matthew H. W. Porous chitosan scaffolds for tissue engineering. Biomaterials 12: 1133–1142; 1920.

    Google Scholar 

  • Okano T.; Yamada N.; Sakai H.; Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res. 27(10): 1243–1251; 1993, Oct.

    Article  PubMed  CAS  Google Scholar 

  • Onishi H.; Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 2: 175–182; 1920.

    Google Scholar 

  • Park I. K.; Yang J.; Jeong H. J.; Bom H. S.; Harada I.; Akaike T.; et al. Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials 24(13): 2331–2337; 2003, Jun.

    Article  PubMed  CAS  Google Scholar 

  • Sechriest V. F.; Miao Y. J.; Niyibizi C.; Westerhausen-Larson A.; Matthew H. W.; Evans C. H.; et al. GAG-augmented polysaccharide hydrogel: A novel biocompatible and biodegradable material to support chondrogenesis. J. Biomed. Mater. Res. 49(4): 534–541; 2000, Mar 15.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T.; Yamato M.; Isoi Y.; Akutsu T.; Setomaru T.; Abe K.; et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90(3): e40; 2002, Feb 22.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T.; Yamato M.; Kikuchi A.; Okano T. Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 7(2): 141–151; 2001, Apr.

    Article  PubMed  CAS  Google Scholar 

  • Tomihata K.; Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7): 567–575; 1997, Apr.

    Article  PubMed  CAS  Google Scholar 

  • VandeVord P. J.; Matthew H. W.; DeSilva S. P.; Mayton L.; Wu B.; Wooley P. H. Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. 59(3): 585–590; 2002, Mar 5.

    Article  PubMed  CAS  Google Scholar 

  • Yang J.; Chung T. W.; Nagaoka M.; Goto M.; Cho C. S.; Akaike T. Hepatocyte-specific porous polymer-scaffolds of alginate/galactosylated chitosan sponge for liver-tissue engineering. Biotechnol. Lett. 23(17): 1385–1389; 2001.

    Article  CAS  Google Scholar 

  • Zhang Y.; Ni M.; Zhang M.; Ratner B. Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Eng. 9(2): 337–345; 2003, Apr.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y.; Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J. Biomed. Mater. Res. 55(3): 304–312; 2001, Jun 5.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y.; Zhang M. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J. Biomed. Mater. Res. 61(1): 1–8; 2002, Jul.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann W. H.; Fink C.; Kralisch D.; Remmers U.; Weil J.; Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68(1): 106–114; 2000, Apr 5.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann W. H.; Schneiderbanger K.; Schubert P.; Didie M.; Munzel F.; Heubach J. F.; et al. Tissue engineering of a differentiated cardiac muscle construct [see comments]. Circ. Res. 90(2): 223–230; 2002, Feb 8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Paul Krebsbach (Chair, Department of Biologic and Material Sciences, University of Michigan) for the use of their lyophilizer. In addition, we would like to acknowledge the salary support for Dr. Francesco Migneco from the University of Padua (Padua, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi K. Birla.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birla, R.K., Dow, D.E., Huang, YC. et al. Methodology for the formation of functional, cell-based cardiac pressure generation constructs in vitro. In Vitro Cell.Dev.Biol.-Animal 44, 340–350 (2008). https://doi.org/10.1007/s11626-008-9098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9098-9

Keywords

Navigation