Skip to main content
Log in

Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Dental caries is the most common oral disease with high incidence, widely spread and can seriously affect the health of oral cavity and the whole body. Current caries prevention measures such as fluoride treatment, antimicrobial agents, and traditional Chinese herbal, have limitations to some extent. Here we design and synthesize a novel peptide based on the amelogenin, and assess its ability to promote the remineralization of initial enamel caries lesions. We used enamel blocks to form initial lesions, and then subjected to 12-day pH cycling in the presence of peptide, NaF and HEPES buffer. Enamel treated with peptide or NaF had shallower, narrower lesions, thicker remineralized surfaces and less mineral loss than enamel treated with HEPES. This peptide can promote the remineralization of initial enamel caries and inhibit the progress of caries. It is a promising anti-caries agent with various research prospects and practical application value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brambilla E. Fluoride- is it capable of fighting old and new dental diseases? An overview of existing fluoride compounds and their clinical applications. Caries Research, 2001, 35(Suppl 1): 6–9

    Google Scholar 

  2. Sheng J, Liu Z. Induction of fluoride-resistant mutant of S. mutans and the measurement of its acidogenesis in vitro. Chinese Journal of Stomatological Research, 2000, 35(2): 95–98 (in Chinese)

    Google Scholar 

  3. Li L. The biochemistry and physiology of metallic fluoride: action, mechanism, and implications. Critical Reviews in Oral Biology and Medicine, 2003, 14(2): 100–114

    Article  Google Scholar 

  4. Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements. Dental Materials, 2003, 19(6): 558–566

    Article  Google Scholar 

  5. Van Loveren C. Sugar alcohols: what is the evidence for cariespreventive and caries-therapeutic effects? Caries Research, 2004, 38(3): 286–293

    Article  Google Scholar 

  6. Wang XJ, Huang H, Yang F, et al. Ectopic study of tissueengineered bone complex with enamel matrix proteins, bone marrow stromal cells in porous calcium phosphate cement scaffolds, in nude mice. Cell Proliferation, 2011, 44(3): 274–282

    Article  Google Scholar 

  7. Mrozik KM, Gronthos S, Menicanin D, et al. Effect of coating Straumann® Bone Ceramic with Emdogain on mesenchymal stromal cell hard tissue formation. Clinical Oral Investigations, 2012, 16(3): 867–878

    Article  Google Scholar 

  8. Rathe F, Junker R, Chesnutt BM, et al. The effect of enamel matrix derivative (Emdogain) on bone formation: a systematic review. Tissue Engineering Part B: Reviews, 2009, 15(3): 215–224

    Article  Google Scholar 

  9. Suzuki S, Nagano T, Yamakoshi Y, et al. Enamel matrix derivative gel stimulates signal transduction of BMP and TGF-β. Journal of Dental Research, 2005, 84(6): 510–514

    Article  Google Scholar 

  10. Windisch P, Sculean A, Klein F, et al. Comparison of clinical, radiographic, and histometric measurements following treatment with guided tissue regeneration or enamel matrix proteins in human periodontal defects. Journal of Periodontology, 2002, 73(4): 409–417

    Article  Google Scholar 

  11. Zhang L, Zou L, Li J, et al. Effect of enamel organic matrix on the potential of Galla chinensis to promote the remineralization of initial enamel carious lesions in vitro. Biomedical Materials, 2009, 4(3): 034102

    Article  Google Scholar 

  12. Zhang L, Xue J, Li J, et al. Effects of Galla chinensis on inhibition of demineralization of regular bovine enamel or enamel disposed of organic matrix. Archives of Oral Biology, 2009, 54(9): 817–822

    Article  Google Scholar 

  13. Chen H, Clarkson BH, Sun K, et al. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. Journal of Colloid and Interface Science, 2005, 288(1): 97–103

    Article  Google Scholar 

  14. Yamagishi K, Onuma K, Suzuki T, et al. Materials chemistry: a synthetic enamel for rapid tooth repair. Nature, 2005, 433(7028): 819

    Article  Google Scholar 

  15. Wang ZW, Zhao YP, Zhou CR, et al. The study on the enamel remineralization by enamel matrix proteins’ inducing. Journal of Sichuan University (Medical Science Edition), 2008, 39(4): 579–582 (in Chinese)

    Google Scholar 

  16. Ishizaki NT, Matsumoto K, Kimura Y, et al. Histopathological study of dental pulp tissue capped with enamel matrix derivative. Journal of Endodontics, 2003, 29(3): 176–179

    Article  Google Scholar 

  17. Xiang C, Ran J, Yang Q, et al. Effects of enamel matrix derivative on remineralization of initial enamel carious lesions in vitro. Archives of Oral Biology, 2013, 58(4): 362–369

    Article  Google Scholar 

  18. Ran JM, Ieong CC, Xiang CY, et al. In vitro inhibition of bovine enamel demineralization by enamel matrix derivative. Scanning, doi: 10.1002/sca.21085

  19. Moradian-Oldak J. Amelogenins: assembly, processing and control of crystal morphology. Matrix Biology, 2001, 20(5–6): 293–305

    Article  Google Scholar 

  20. Du C, Falini G, Fermani S, et al. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science, 2005, 307(5714): 1450–1454

    Article  Google Scholar 

  21. Fincham AG, Moradian-Oldak J, Diekwisch TG, et al. Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. Journal of Structural Biology, 1995, 115(1): 50–59

    Article  Google Scholar 

  22. Moradian-Oldak J. Protein-mediated enamel mineralization. Frontiers in Bioscience, 2012, 17(7): 1996–2023

    Article  Google Scholar 

  23. Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials, 2009, 30(4): 478–483

    Article  Google Scholar 

  24. Fan Y, Nelson JR, Alvarez JR, et al. Amelogenin-assisted ex vivo remineralization of human enamel: Effects of supersaturation degree and fluoride concentration. Acta Biomaterialia, 2011, 7(5): 2293–2302

    Article  Google Scholar 

  25. Porter SM. Seawater chemistry and early carbonate biomineralization. Science, 2007, 316(5829): 1302

    Article  Google Scholar 

  26. Paine ML, Snead ML. Tooth developmental biology: disruptions to enamel-matrix assembly and its impact on biomineralization. Orthodontics & Craniofacial Research, 2005, 8(4): 239–251

    Article  Google Scholar 

  27. Ieong CC, Zhou XD, Li JY, et al. Possibilities and potential roles of the functional peptides based on enamel matrix proteins in promoting the remineralization of initial enamel caries. Medical Hypotheses, 2011, 76(3): 391–394

    Article  Google Scholar 

  28. Cate JMT, Duijsters PP. Influence of fluoride in solution on tooth demineralization. I. Chemical data. Caries Research, 1983, 17(3): 193–199

    Article  Google Scholar 

  29. White DJ. Reactivity of fluoride dentifrices with artificial caries. I. Effects on early lesions: F uptake, surface hardening and remineralization. Caries Research, 1987, 21(2): 126–140

    Article  Google Scholar 

  30. Snead ML, Zhu DH, Lei Y, et al. A simplified genetic design for mammalian enamel. Biomaterials, 2011, 32(12): 3151–3157

    Article  Google Scholar 

  31. Lacruz RS, Smith CE, Bringas P Jr, et al. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling. Journal of Cellular Physiology, 2012, 227(5): 2264–2275

    Article  Google Scholar 

  32. Aoba T, Tanabe T, Moreno EC. Proteins in the enamel fluid of immature porcine teeth. Journal of Dental Research, 1987, 66(12): 1721–1726

    Article  Google Scholar 

  33. Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials, 2005, 26(13): 1595–1603

    Article  Google Scholar 

  34. Yamakoshi Y, Hu JC C, Ryu OH, et al. A comprehensive strategy for purifying pig enamel proteins in biomineralization: formation, diversity, evolution and application. In: Proceedings of the 8th International Symposium on Biomineralization. Hadano: Tokai University Press, 2003, 326–332

    Google Scholar 

  35. Luo JJ, Ning TY, Cao Y, et al. Biomimic enamel remineralization by hybridization calcium- and phosphate-loaded liposomes with amelogenin-inspired peptide. Key Engineering Materials, 2012, 512–515: 1727–1730

    Article  Google Scholar 

  36. Roy MD, Stanley SK, Amis EJ, et al. Identification of a highly specific hydroxyapatite-binding peptide using phage display. Advanced Materials, 2008, 20(10): 1830–1836

    Article  Google Scholar 

  37. Ravindranath HH, Chen LS, Zeichner-David M, et al. Interaction between the enamel matrix proteins amelogenin and ameloblastin. Biochemical and Biophysical Research Communications, 2004, 323(3): 1075–1083

    Article  Google Scholar 

  38. Beniash E, Simmer JP, Margolis HC. The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro. Journal of Structural Biology, 2005, 149(2): 182–190

    Article  Google Scholar 

  39. Paine ML, Wang HJ, Luo W, et al. A transgenic animal model resembling amelogenesis imperfecta related to ameloblastin overexpression. The Journal of Biological Chemistry, 2003, 278(21): 19447–19452

    Article  Google Scholar 

  40. Habelitz S, DenBesten PK, Marshall SJ, et al. Self-assembly and effect on crystal growth of the leucine-rich amelogenin peptide. European Journal of Oral Sciences, 2006, 114(Suppl 1): 315–319

    Article  Google Scholar 

  41. Moradian-Oldak J, Tan J, Fincham AG. Interaction of amelogenin with hydroxyapatite crystals: an adherence effect through amelogenin molecular self-association. Biopolymers, 1998, 46 (4): 225–238

    Article  Google Scholar 

  42. Wallwork ML, Kirkham J, Chen H, et al. Binding of dentin noncollagenous matrix proteins to biological mineral crystals: an atomic force microscopy study. Calcified Tissue International, 2002, 71(3): 249–256

    Article  Google Scholar 

  43. Müller H, Zentel R, Janshoff A, et al. Control of CaCO3 crystallization by demixing of monolayers. Langmuir, 2006, 22(26): 11034–11040

    Article  Google Scholar 

  44. Bagheri HG, Sadr A, Espigares J, et al. Leucine rich amelogenin peptide improves the remineralization of enamel lesions. Dental Materials, 2014, 30(suppl): e172–e173

    Article  Google Scholar 

  45. Tartaix PH, Doulaverakis M, George A, et al. In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. The Journal of Biological Chemistry, 2004, 279(18): 18115–18120

    Article  Google Scholar 

  46. He G, Dahl T, Veis A, et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature Materials, 2003, 2(8): 552–558

    Article  Google Scholar 

  47. Aggeli A, Bell M, Boden N, et al. Self-assembling peptide polyelectrolyte beta-sheet complexes form nematic hydrogels. Angewandte Chemie International Edition in English, 2003, 42(45): 5603–5606

    Article  Google Scholar 

  48. Kirkham J, Firth A, Vernals D, et al. Self-assembling peptide scaffolds promote enamel remineralization. Journal of Dental Research, 2007, 86(5): 426–430

    Article  Google Scholar 

  49. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684–1688

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linglin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Lv, X., Tu, H. et al. Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin. Front. Mater. Sci. 9, 293–302 (2015). https://doi.org/10.1007/s11706-015-0298-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-015-0298-4

Keywords

Navigation