Skip to main content
Log in

Protective Effect of Nanoceria on Cisplatin-Induced Nephrotoxicity by Amelioration of Oxidative Stress and Pro-inflammatory Mechanisms

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cisplatin (CP) is one of the most important anticancer compounds with its therapeutic usefulness in diverse types of solid cancer. However, its use is limited due to nephrotoxicity induced by it. Oxidative stress is an effective participant which contributes actively to pathogenesis of CP-induced nephrotoxicity. Nanoparticle form of a rare earth metal cerium, also known as nanoceria (NC), has come up as a potential antioxidant and anti-inflammatory agent. In the present study, administration of CP in Swiss mice resulted in reduction of body weight, increased oxidative stress and pro-inflammatory cytokine levels including IL-6 and TNF-α along with alteration in normal histological architecture of kidney. On the contrary, NC (0.2 and 2 mg/kg i.p.) ameliorated nephrotoxicity of CP which was evident by reduction in levels of renal injury markers in plasma, i.e., creatinine and blood urea nitrogen. NC ameliorated oxidative stress by showing a reduction in levels of malondialdehyde and increased levels of endogenous antioxidants reduced glutathione and catalase. Further, NC treatment also reduced the levels of pro-inflammatory cytokines. Furthermore, protective effect of NC was also corroborated by histopathological studies wherein, kidneys from CP group showed altered tissue structure after acute as well as chronic exposure of CP while the tissues from treated groups showed absence of alterations in kidney histology. The results from present study suggested that oxidative stress and pro-inflammatory cytokines play a central role in pathogenesis of CP-induced nephrotoxicity and NC provides protection from CP-induced nephrotoxicity due to its antioxidant and anti-inflammatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320

    Article  CAS  Google Scholar 

  2. Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol 67:93–130

  3. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279

    Article  CAS  Google Scholar 

  4. Heiger-Bernays WJ, Essigmann JM, Lippard SJ (1990) Effect of the antitumor drug cis-diamminedichloroplatinum (II) and related platinum complexes on eukaryotic DNA replication. Biochemistry 29(36):8461–8466

    Article  CAS  Google Scholar 

  5. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin− DNA adducts. Chem Rev 99(9):2467–2498

    Article  CAS  Google Scholar 

  6. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007

    Article  CAS  Google Scholar 

  7. Ciarimboli G, Ludwig T, Lang D, Pavenstädt H, Koepsell H, Piechota H-J, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167(6):1477–1484

    Article  CAS  Google Scholar 

  8. Kuhlmann M, Burkhardt G, Köhler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12(12):2478–2480

    Article  CAS  Google Scholar 

  9. Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61(3):223–242

    Article  CAS  Google Scholar 

  10. Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A (2005) Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology 212(2–3):116–123

    Article  CAS  Google Scholar 

  11. de Oliveira Mora L, Antunes LMG, Bianchi MdLP (2003) The effects of oral glutamine on cisplatin-induced nephrotoxicity in rats. Pharmacol Res 47(6):517–522

    Article  Google Scholar 

  12. Bompart G (1989) Cisplatin-induced changes in cytochrome P-450, lipid peroxidation and drug-metabolizing enzyme activities in rat kidney cortex. Toxicol Lett 48(2):193–199

    Article  CAS  Google Scholar 

  13. Jin-Gang Z, Lindup WE (1993) Role of mitochondria in cisplatin-induced oxidative damage exhibited by rat renal cortical slices. Biochem Pharmacol 45(11):2215–2222

    Article  Google Scholar 

  14. Hannemann J, Baumann K (1988) Cisplatin-induced lipid peroxidation and decrease of gluconeogenesis in rat kidney cortex: different effects of antioxidants and radical scavengers. Toxicology 51(2–3):119–132

    Article  CAS  Google Scholar 

  15. Kemp G, Rose P, Lurain J, Berman M, Manetta A, Roullet B, Homesley H, Belpomme D, Glick J (1996) Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14(7):2101–2112

    Article  CAS  Google Scholar 

  16. Foster-Nora JA, Siden R (1997) Amifostine for protection from antineoplastic drug toxicity. Am J Health Syst Pharm 54(7):787–800

    Article  CAS  Google Scholar 

  17. Hartmann JT, Fels LM, Knop S, Stolte H, Kanz L, Bokemeyer C (2000) A randomized trial comparing the nephrotoxicity of cisplatin/ifosfamide-based combination chemotherapy with or without amifostine in patients with solid tumors. Investig New Drugs 18(3):281–289

    Article  CAS  Google Scholar 

  18. Castiglione F, Dalla AM, Porcile G (1999) Protection of normal tissues from radiation and cytotoxic therapy: the development of amifostine. Tumori 85(2):85–91

    CAS  PubMed  Google Scholar 

  19. Ramnath N, LoRusso P, Simon M, Martino S (1997) Phase II evaluation of cisplatin and WR2721 for refractory metastatic breast cancer. Am J Clin Oncol 20(4):368–372

    Article  CAS  Google Scholar 

  20. Rick O, Beyer J, Schwella N, Schubart H, Schleicher J, Siegert W (2001) Assessment of amifostine as protection from chemotherapy-induced toxicities after conventional-dose and high-dose chemotherapy in patients with germ cell tumor. Ann Oncol 12(8):1151–1155

    Article  CAS  Google Scholar 

  21. Kyosseva SV, Chen L, Seal S, McGinnis JF (2013) Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice. Exp Eye Res 116:63–74

    Article  CAS  Google Scholar 

  22. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Anti-inflammatory properties of cerium oxide nanoparticles. Small 5(24):2848–2856

    Article  CAS  Google Scholar 

  23. Celardo I, Traversa E, Ghibelli L (2011) Cerium oxide nanoparticles: a promise for applications in therapy. J Exp Ther Oncol 9(1):47–51

    CAS  PubMed  Google Scholar 

  24. Das M, Patil S, Bhargava N, Kang J-F, Riedel LM, Seal S, Hickman JJ (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10):1918–1925

    Article  CAS  Google Scholar 

  25. González-Flores D, De Nicola M, Bruni E, Caputo F, Rodríguez AB, Pariente JA, Ghibelli L (2014) Nanoceria protects from alterations in oxidative metabolism and calcium overloads induced by TNFα and cycloheximide in U937 cells: pharmacological potential of nanoparticles. Mol Cell Biochem 397(1–2):245–253

    Article  Google Scholar 

  26. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46(16):2736–2738

    Article  CAS  Google Scholar 

  27. Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 10:1056–1058

    Article  Google Scholar 

  28. Dowding JM, Dosani T, Kumar A, Seal S, Self WT (2012) Cerium oxide nanoparticles scavenge nitric oxide radical (˙ NO). Chem Commun 48(40):4896–4898

    Article  CAS  Google Scholar 

  29. Cimini A, D’Angelo B, Das S, Gentile R, Benedetti E, Singh V, Monaco AM, Santucci S, Seal S (2012) Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater 8(6):2056–2067

    Article  CAS  Google Scholar 

  30. Estevez A, Pritchard S, Harper K, Aston J, Lynch A, Lucky J, Ludington J, Chatani P, Mosenthal W, Leiter J (2011) Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 51(6):1155–1163

    Article  CAS  Google Scholar 

  31. Heckman KL, DeCoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, Leiter JC, Clauss J, Knapp K, Gomez C (2013) Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 7(12):10582–10596

    Article  CAS  Google Scholar 

  32. Sangomla S, Saifi MA, Khurana A, Godugu C (2018) Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation. J Trace Elem Med Biol 47:53–62

    Article  CAS  Google Scholar 

  33. Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE (2007) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73(3):549–559

    Article  CAS  Google Scholar 

  34. Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Rahimifard M, Navaei-Nigjeh M, Hassani S, Baeeri M, Abdollahi M (2012) Improvement of isolated rat pancreatic islets function by combination of cerium oxide nanoparticles/sodium selenite through reduction of oxidative stress. Toxicol Mech Methods 22(6):476–482

    Article  CAS  Google Scholar 

  35. Khurana A, Saifi M, Godugu C (2017) Nanoceria reduces oxidative stress, inflammation and display anti-fibrotic properties in animal models of chronic pancreatitis. Pancreas, Lippincott Williams & Wilkins Two Commerce SQ, 2001 Market St, Philadelphia, PA 19103 USA, pp 1411–1412

  36. Asati A, Santra S, Kaittanis C, Perez JM (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9):5321–5331

    Article  CAS  Google Scholar 

  37. Sack M, Alili L, Karaman E, Das S, Gupta A, Seal S, Brenneisen P (2014) Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles—a novel aspect in cancer therapy. Mol Cancer Ther 13(7):1740–1749

    Article  CAS  Google Scholar 

  38. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5(12):2573–2577

    Article  CAS  Google Scholar 

  39. Xu M-X, Zhu Y-F, Chang H-F, Liang Y (2016) Nanoceria restrains PM2. 5-induced metabolic disorder and hypothalamus inflammation by inhibition of astrocytes activation related NF-κB pathway in Nrf2 deficient mice. Free Radic Biol Med 99:259–272

    Article  CAS  Google Scholar 

  40. Reddy DR, Khurana A, Bale S, Ravirala R, Reddy VSS, Mohankumar M, Godugu C (2016) Natural flavonoids silymarin and quercetin improve the brain distribution of co-administered P-gp substrate drugs. SpringerPlus 5(1):1618

    Article  Google Scholar 

  41. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta Gen Subj 582(1):67–78

    Article  CAS  Google Scholar 

  42. Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  43. Kumar GS, Kulkarni A, Khurana A, Kaur J, Tikoo K (2014) Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy. Chem Biol Interact 223:125–133

    Article  CAS  Google Scholar 

  44. Ries F, Klastersky J (1986) Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis 8(5):368–379

    Article  CAS  Google Scholar 

  45. Gong J, Costanzo A, Yang H-Q, Melino G, Kaelin WG, Levrero M, Wang JY (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399(6738):806–809

    Article  CAS  Google Scholar 

  46. Leibbrandt ME, Wolfgang GH, Metz AL, Ozobia AA, Haskins JR (1995) Critical subcellular targets of cisplatin and related platinum analogs in rat renal proximal tubule cells. Kidney Int 48(3):761–770

    Article  CAS  Google Scholar 

  47. Antunes LMG, Darin JDAC, Maria de Lourdes PB (2001) Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res 43(2):145–150

    Article  CAS  Google Scholar 

  48. Santos N, Catao C, Martins N, Curti C, Bianchi M, Santos A (2007) Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 81(7):495–504

    Article  CAS  Google Scholar 

  49. Cummings BS, Schnellmann RG (2002) Cisplatin-induced renal cell apoptosis: caspase 3-dependent and-independent pathways. J Pharmacol Exp Ther 302(1):8–17

    Article  CAS  Google Scholar 

  50. Zhang B, Ramesh G, Norbury C, Reeves W (2007) Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. Kidney Int 72(1):37–44

    Article  CAS  Google Scholar 

  51. Baliga R, Ueda N, Walker PD, Shah SV (1999) Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev 31(4):971–997

    Article  CAS  Google Scholar 

  52. Ramesh G, Reeves WB (2004) Inflammatory cytokines in acute renal failure. Kidney Int 66:S56–S61

    Article  Google Scholar 

  53. Ramesh G, Reeves WB (2004) Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-α. Kidney Int 65(2):490–498

    Article  CAS  Google Scholar 

  54. Antunes LMG, Darin JDAC, Bianchi MDLP (2000) Protective effects of vitamin C against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study. Pharmacol Res 41(4):405–411

    Article  CAS  Google Scholar 

  55. Alili L, Sack M, Karakoti AS, Teuber S, Puschmann K, Hirst SM, Reilly CM, Zanger K, Stahl W, Das S (2011) Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor–stroma interactions. Biomaterials 32(11):2918–2929

    Article  CAS  Google Scholar 

  56. Lin W, Huang Y-w, Zhou X-D, Ma Y (2006) Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25(6):451–457

    Article  CAS  Google Scholar 

  57. Alili L, Sack M, von Montfort C, Giri S, Das S, Carroll KS, Zanger K, Seal S, Brenneisen P (2013) Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal 19(8):765–778

    Article  CAS  Google Scholar 

  58. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  CAS  Google Scholar 

  59. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    Article  CAS  Google Scholar 

  60. Kumari P, Saifi MA, Khurana A, Godugu C (2018) Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. J Trace Elem Med Biol 50:198–208

    Article  CAS  Google Scholar 

  61. Ramesh G, Reeves WB (2002) TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110(6):835–842

    Article  CAS  Google Scholar 

  62. Kouvaris JR, Kouloulias VE, Vlahos LJ (2007) Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 12(6):738–747

    Article  CAS  Google Scholar 

  63. Saifi MA, Khurana A, Godugu C (2018) Nanomaterials in chromatography: current trends in chromatographic research technology and techniques. In: Nanotoxicology: toxicity and risk assessment of nanomaterials, nanomaterials in chromatography. Elsevier, Amsterdam, pp 437–465

  64. Saifi M, Khan W, Godugu C (2018) Cytotoxicity of nanomaterials: nanotoxicology to address the safety concerns of nanoparticles. Pharm Nanotechnol 6(1):3–16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandraiah Godugu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saifi, M.A., Sangomla, S., Khurana, A. et al. Protective Effect of Nanoceria on Cisplatin-Induced Nephrotoxicity by Amelioration of Oxidative Stress and Pro-inflammatory Mechanisms. Biol Trace Elem Res 189, 145–156 (2019). https://doi.org/10.1007/s12011-018-1457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1457-0

Keywords

Navigation