Skip to main content

Advertisement

Log in

Cell Hypertrophy and MEK/ERK Phosphorylation are Regulated by Glyceraldehyde-Derived AGEs in Cardiomyocyte H9c2 Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Diabetic cardiomyopathy has been shown to promote hypertrophy, leading to heart failure. Recent studies have reported a correlation between diabetic cardiomyopathy and oxidative stress, suggesting that the accumulation of advanced glycation end products (AGEs) induces the production of reactive oxygen species (ROS). In a clinical setting, AGEs have been shown to increase the risk of cardiovascular disease; however, the relationship between AGEs and cardiac hypertrophy remains unclear. This study sought to identify the role of AGEs in cardiac hypertrophy by treating H9c2 cells with glyceraldehyde-derived AGEs (200 μg/ml) or H2O2 (50 μM) for 96 h. Our results demonstrate that AGEs significantly increased protein levels and cell size. These effects were effectively blocked with PD98059 (10 μM; MEK/ERK inhibitor) pretreatment, suggesting that AGEs caused cell hypertrophy via the MEK/ERK pathway. We then treated cells with AGEs and H2O2 for 0–120 min and employed the Odyssey infrared imaging system to detect MEK/ERK phosphorylation. Our results show that AGEs up-regulated MEK/ERK phosphorylation. However, this effect was blocked by NAC (5 mM; ROS inhibitor), indicating that AGEs regulate MEK/ERK phosphorylation via ROS. Our findings suggest that glyceraldehyde-derived AGEs are closely related to cardiac hypertrophy and further identify a molecular mechanism underlying the promotion of diabetic cardiomyopathy by AGEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

BSA:

Bovine serum albumin

DCFH-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DM:

Diabetes mellitus

FBS:

Fetal bovine serum

HBSS:

Hanks balanced salt solution

NAC:

N-acetyl-l-cysteine

ROS:

Reactive oxygen species

References

  1. Sato, T., Iwaki, M., Shimogaito, N., Wu, X., Yamagishi, S., et al. (2006). TAGE (toxic AGEs) theory in diabetic complications. Current Molecular Medicine, 6, 351–358.

    Article  PubMed  CAS  Google Scholar 

  2. Thorpe, S. R., & Baynes, J. W. (1996). Role of the maillard reaction in diabetes mellitus and diseases of aging. Drugs and Aging, 9, 69–77.

    Article  PubMed  CAS  Google Scholar 

  3. Kasper, M., & Funk, R. H. (2001). Age-related changes in cells and tissues due to advanced glycation end products (AGEs). Archives of Gerontology and Geriatrics, 32, 233–243.

    Article  PubMed  CAS  Google Scholar 

  4. Luth, H. J., Ogunlade, V., Kuhla, B., Kientsch-Engel, R., Stahl, P., et al. (2005). Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cerebral Cortex, 15, 211–220.

    Article  PubMed  Google Scholar 

  5. Munch, G., Thome, J., Foley, P., Schinzel, R., & Riederer, P. (1997). Advanced glycation end products in ageing and Alzheimer’s disease. Brain Research. Brain Research Reviews, 23, 134–143.

    Article  PubMed  CAS  Google Scholar 

  6. Tan, K. C., Shiu, S. W., Chow, W. S., Leng, L., Bucala, R., et al. (2006). Association between serum levels of soluble receptor for advanced glycation end products and circulating advanced glycation end products in type 2 diabetes. Diabetologia, 49, 2756–2762.

    Article  PubMed  CAS  Google Scholar 

  7. Basta, G., Schmidt, A. M., & De Caterina, R. (2004). Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovascular Research, 63, 582–592.

    Article  PubMed  CAS  Google Scholar 

  8. Yamagishi, S., Takeuchi, M., Inagaki, Y., Nakamura, K., & Imaizumi, T. (2003). Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. International Journal of Clinical Pharmacology Research, 23, 129–134.

    PubMed  CAS  Google Scholar 

  9. Koga, K., Yamagishi, S., Okamoto, T., Inagaki, Y., Amano, S., et al. (2002). Serum levels of glucose-derived advanced glycation end products are associated with the severity of diabetic retinopathy in type 2 diabetic patients without renal dysfunction. International Journal of Clinical Pharmacology Research, 22, 13–17.

    PubMed  CAS  Google Scholar 

  10. Miura, J., Yamagishi, S., Uchigata, Y., Takeuchi, M., Yamamoto, H., et al. (2003). Serum levels of non-carboxymethyllysine advanced glycation endproducts are correlated to severity of microvascular complications in patients with type 1 diabetes. Journal of Diabetes and Its Complications, 17, 16–21.

    Article  PubMed  Google Scholar 

  11. Brownlee, M. (2004). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820.

    Article  CAS  Google Scholar 

  12. Wautier, J. L., & Guillausseau, P. J. (2001). Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes & Metabolism, 27, 535–542.

    CAS  Google Scholar 

  13. Ahmed, N. (2005). Advanced glycation endproducts—Role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67, 3–21.

    Article  PubMed  CAS  Google Scholar 

  14. Hayat, S. A., Patel, B., Khattar, R. S., & Malik, R. A. (2004). Diabetic cardiomyopathy: Mechanisms, diagnosis and treatment. Clinical Science (London), 107, 539–557.

    Article  CAS  Google Scholar 

  15. Galderisi, M., Anderson, K. M., Wilson, P. W., & Levy, D. (1991). Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the framingham heart study). American Journal of Cardiology, 68, 85–89.

    Article  PubMed  CAS  Google Scholar 

  16. Aragno, M., Mastrocola, R., Alloatti, G., Vercellinatto, I., Bardini, P., et al. (2008). Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology, 149, 380–388.

    Article  PubMed  CAS  Google Scholar 

  17. Xu, F. P., Chen, M. S., Wang, Y. Z., Yi, Q., Lin, S. B., et al. (2004). Leptin induces hypertrophy via endothelin-1-reactive oxygen species pathway in cultured neonatal rat cardiomyocytes. Circulation, 110, 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  18. Cai, L., Wang, Y., Zhou, G., Chen, T., Song, Y., et al. (2006). Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. Journal of the American College of Cardiology, 48, 1688–1697.

    Article  PubMed  CAS  Google Scholar 

  19. Cai, L. (2006). Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radical Biology & Medicine, 41, 851–861.

    Article  CAS  Google Scholar 

  20. Koyama, Y., Takeishi, Y., Arimoto, T., Niizeki, T., Shishido, T., et al. (2007). High serum level of pentosidine, an advanced glycation end product (AGE), is a risk factor of patients with heart failure. Journal of Cardiac Failure, 13, 199–206.

    Article  PubMed  CAS  Google Scholar 

  21. Nozynski, J., Zakliczynski, M., Konecka-Mrowka, D., Przybylski, R., Zembala, M., et al. (2011). Advanced glycation end-products in myocardium-supported vessels: Effects of heart failure and diabetes mellitus. Journal of Heart and Lung Transplantation, 30, 558–564.

    Article  PubMed  Google Scholar 

  22. Willemsen, S., Hartog, J. W., Hummel, Y. M., Posma, J. L., van Wijk, L. M., et al. (2010). Effects of alagebrium, an advanced glycation end-product breaker, in patients with chronic heart failure: Study design and baseline characteristics of the beneficial trial. European Journal of Heart Failure, 12, 294–300.

    Article  PubMed  CAS  Google Scholar 

  23. Willemsen, S., Hartog, J. W., Heiner-Fokkema, M. R., van Veldhuisen, D. J., & Voors, A. A. (2012). Advanced glycation end-products, a pathophysiological pathway in the cardiorenal syndrome. Heart Failure Reviews, 17, 221–228.

    Article  PubMed  CAS  Google Scholar 

  24. Willemsen, S., Hartog, J. W., Hummel, Y. M., van Ruijven, M. H., van der Horst, I. C., et al. (2011). Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients. European Journal of Heart Failure, 13, 76–82.

    Article  PubMed  CAS  Google Scholar 

  25. Li, S. Y., Sigmon, V. K., Babcock, S. A., & Ren, J. (2007). Advanced glycation endproduct induces ros accumulation, apoptosis, map kinase activation and nuclear o-glcnacylation in human cardiac myocytes. Life Sciences, 80, 1051–1056.

    Article  PubMed  CAS  Google Scholar 

  26. Jeong, J. J., Ha, Y. M., Jin, Y. C., Lee, E. J., Kim, J. S., et al. (2009). Rutin from lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects h9c2 cells against hydrogen peroxide-mediated injury via erk1/2 and pi3k/akt signals in vitro. Food and Chemical Toxicology, 47, 1569–1576.

    Article  PubMed  CAS  Google Scholar 

  27. Kumar, S., & Sitasawad, S. L. (2009). N-acetylcysteine prevents glucose/glucose oxidase-induced oxidative stress, mitochondrial damage and apoptosis in h9c2 cells. Life Sciences, 84, 328–336.

    Article  PubMed  CAS  Google Scholar 

  28. Shen, C., Li, Q., Zhang, Y. C., Ma, G., Feng, Y., et al. (2010). Advanced glycation endproducts increase epc apoptosis and decrease nitric oxide release via mapk pathways. Biomedicine & Pharmacotherapy, 64, 35–43.

    Article  CAS  Google Scholar 

  29. Tang, M., Zhong, M., Shang, Y., Lin, H., Deng, J., et al. (2008). Differential regulation of collagen types I and III expression in cardiac fibroblasts by ages through trb3/mapk signaling pathway. Cellular and Molecular Life Sciences, 65, 2924–2932.

    Article  PubMed  CAS  Google Scholar 

  30. Bueno, O. F., De Windt, L. J., Tymitz, K. M., Witt, S. A., Kimball, T. R., et al. (2000). The mek1-erk1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO Journal, 19, 6341–6350.

    Article  PubMed  CAS  Google Scholar 

  31. Kitahara, Y., Takeuchi, M., Miura, K., Mine, T., Matsui, T., et al. (2008). Glyceraldehyde-derived advanced glycation end products (AGEs). A novel biomarker of postprandial hyperglycaemia in diabetic rats. Clinical and Experimental Medicine, 8, 175–177.

    Article  PubMed  CAS  Google Scholar 

  32. Ko, S. Y., Lin, Y. P., Lin, Y. S., & Chang, S. S. (2010). Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radical Biology & Medicine, 49, 474–480.

    Article  CAS  Google Scholar 

  33. Rosner, M., Hofer, K., Kubista, M., & Hengstschlager, M. (2003). Cell size regulation by the human tsc tumor suppressor proteins depends on pi3k and fkbp38. Oncogene, 22, 4786–4798.

    Article  PubMed  CAS  Google Scholar 

  34. Leclerc, E., Fritz, G., Weibel, M., Heizmann, C. W., & Galichet, A. (2007). S100b and s100a6 differentially modulate cell survival by interacting with distinct rage (receptor for advanced glycation end products) immunoglobulin domains. Journal of Biological Chemistry, 282, 31317–31331.

    Article  PubMed  CAS  Google Scholar 

  35. Riuzzi, F., Sorci, G., Beccafico, S., & Donato, R. (2012). S100b engages rage or bfgf/fgfr1 in myoblasts depending on its own concentration and myoblast density. Implications for muscle regeneration. PLoS One, 7, e28700.

    Article  PubMed  CAS  Google Scholar 

  36. Donato, R., Sorci, G., Riuzzi, F., Arcuri, C., Bianchi, R., et al. (2009). S100b’s double life: Intracellular regulator and extracellular signal. Biochimica et Biophysica Acta, 1793, 1008–1022.

    Article  PubMed  CAS  Google Scholar 

  37. Valencia, J. V., Mone, M., Zhang, J., Weetall, M., Buxton, F. P., et al. (2004). Divergent pathways of gene expression are activated by the rage ligands s100b and age-bsa. Diabetes, 53, 743–751.

    Article  PubMed  CAS  Google Scholar 

  38. Pacher, P., & Szabo, C. (2006). Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Current Opinion in Pharmacology, 6, 136–141.

    Article  PubMed  CAS  Google Scholar 

  39. Koyama, Y., Takeishi, Y., Takahashi, H., Shishido, T., Arimoto, T., et al. (2007). Azelnidipine inhibits h2o2-induced cell death in neonatal rat cardiomyocytes. Cardiovascular Drugs and Therapy, 21, 69–72.

    Article  PubMed  CAS  Google Scholar 

  40. Lorenzi, R., Andrades, M. E., Bortolin, R. C., Nagai, R., Dal-Pizzol, F., et al. (2010). Glycolaldehyde induces oxidative stress in the heart: A clue to diabetic cardiomyopathy? Cardiovascular Toxicology, 10, 244–249.

    Article  PubMed  CAS  Google Scholar 

  41. Boudina, S., & Abel, E. D. (2007). Diabetic cardiomyopathy revisited. Circulation, 115, 3213–3223.

    Article  PubMed  Google Scholar 

  42. Tikellis, C., Thomas, M. C., Harcourt, B. E., Coughlan, M. T., Pete, J., et al. (2008). Cardiac inflammation associated with a western diet is mediated via activation of rage by ages. American Journal of Physiology. Endocrinology and Metabolism, 295, E323–E330.

    Article  PubMed  CAS  Google Scholar 

  43. Ma, H., Li, S. Y., Xu, P., Babcock, S. A., Dolence, E. K., et al. (2009). Advanced glycation endproduct (AGE) accumulation and age receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. Journal of Cellular and Molecular Medicine, 13, 1751–1764.

    Article  PubMed  Google Scholar 

  44. Nozynski, J., Zakliczynski, M., Konecka-Mrowka, D., Nikiel, B., Mlynarczyk-Liszka, J., et al. (2009). Advanced glycation end products in the development of ischemic and dilated cardiomyopathy in patients with diabetes mellitus type 2. Transplantation Proceedings, 41, 99–104.

    Article  PubMed  CAS  Google Scholar 

  45. Huang, J. S., Chuang, L. Y., Guh, J. Y., Yang, Y. L., & Hsu, M. S. (2008). Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells. Toxicology and Applied Pharmacology, 233, 220–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shun-Yao Ko or Yi-Chiang Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, SY., Lin, IH., Shieh, TM. et al. Cell Hypertrophy and MEK/ERK Phosphorylation are Regulated by Glyceraldehyde-Derived AGEs in Cardiomyocyte H9c2 Cells. Cell Biochem Biophys 66, 537–544 (2013). https://doi.org/10.1007/s12013-012-9501-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9501-8

Keywords

Navigation