Skip to main content

Advertisement

Log in

Human Periosteal Derived Stem Cell Potential: The Impact of age

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

There is a great deal of interest in the understanding of possible age-related changes in Mesenchymal Stem Cells in view of their use for regenerative medicine applications. Given to the outmost standing of periosteum in bone biology and to probe data for a cell-based therapy promoting graft osseointegration in the elderly, we tried to identify specific aging markers or pattern of expression in human periosteal precursor cells. Immunohistochemical detection of Ki67 and p53, Nitric Oxide production and qRT- PCR of a selected gene panel for osteoblastic differentiation, bone remodeling and stemness were evaluated. We confirmed that both Ki67 and p53 are noteworthy indicators of senescence in human periosteal precursor cells and their expression significantly correlate with cell NO production. Moreover, cell age affects genes involved in bone remodeling, with a significant increase in interleukin-6 mRNA expression and receptor activator of nuclear factor kappa-B ligand/osteoprotegerin ratio. The analysis of mRNAs of genes involved in pluripotency regulation and self-renewal of stem cells, evidenced changes at least in part related to bone remodeling. We believe that this is the first study taking on age-related changes in human periosteal precursor cells, and paving the way toward new regenerative medicine strategies in bone aging and/or bone metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zaidi, M. (2007). Skeletal remodeling in health and disease. Nature Medicine, 13, 791–801.

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez, J. P., Rios, S., Fernandez, M., & Santibañez, J. F. (2004). Differential activation of ERK1,2MAP Kinase signaling pathway in mesenchymal stem cell from control and osteoporotic postmenopausal women. Journal of Cellular Biochemistry, 92, 745–754.

    Article  CAS  PubMed  Google Scholar 

  3. Martin, T. J., & Sims, N. A. (2005). Osteoclast-derived activity in the coupling of bone formation to resorption. Trends in Molecular Medicine, 11, 76–81.

    Article  CAS  PubMed  Google Scholar 

  4. Leskelä, H. V., Risteli, J., Niskanen, S., Koivunen, J., Ivaska, K. K., & Lehenkari, P. (2003). Osteoblast recruitment from stem cells does not decrease by age at late adulthood. Biochemical and Biophysical Research Communications, 311, 1008–1013.

    Article  PubMed  Google Scholar 

  5. Caplan, A. I. (2005). Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Engineering, 11, 1198–1211.

    Article  CAS  PubMed  Google Scholar 

  6. Veronesi, F., Torricelli, P., Borsari, V., Tschon, M., Rimondini, L., & Fini, M. (2011). Mesenchymal stem cells in the aging and osteoporotic population. Critical Reviews in Eukaryotic Gene Expression, 21, 363–377.

    Article  CAS  PubMed  Google Scholar 

  7. Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614–636.

    Article  CAS  PubMed  Google Scholar 

  8. Bullwinkel, J., Baron-Lühr, B., Lüdemann, A., Wohlenberg, C., Gerdes, J., & Scholzen, T. (2006). Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. Journal of Cellular Physiology, 206, 624–635.

    Article  CAS  PubMed  Google Scholar 

  9. Lawless, C., Wang, C., Jurk, D., Merz, A., Zglinicki, T. V., & Passos, J. F. (2010). Quantitative assessment of markers for cell senescence. Experimental Gerontology, 45, 772–778. doi:10.1016/j.exger.2010.01.018.

    Article  CAS  PubMed  Google Scholar 

  10. Yan, X., Ehnert, S., Culmes, M., et al. (2014). 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PLoS One, 6, e90846. doi:10.1371/journal.pone.0090846.

    Article  Google Scholar 

  11. Kasper, G., Mao, L., Geissler, S., et al. (2009). Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells, 27, 1288–1297. doi:10.1002/stem.49.

    Article  CAS  PubMed  Google Scholar 

  12. Stenderup, K., Justesen, J., Clausen, C., & Kassem, M. (2003). Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33, 919–926.

    Article  PubMed  Google Scholar 

  13. Zhou, S., Greenberger, J. S., Epperly, M. W., et al. (2003). Age-related intrinsic changes in human bone marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell, 7, 335–343. doi:10.1111/j.1474-9726.2008.00377.x.

    Article  Google Scholar 

  14. Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development, 129, 163–173. doi:10.1016/j.mad.2007.12.002.

    Article  CAS  PubMed  Google Scholar 

  15. Abdallah, B. M., Haack-Sørensen, M., Fink, T., & Kassem, M. (2006). Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone, 39, 181–188.

    Article  PubMed  Google Scholar 

  16. Astudillo, P., Rios, S., Pastenes, L., Pino, A. M., & Rodríguez, J. P. (2008). Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) is characterized by impaired leptin action. Journal of Cellular Biochemistry, 103, 1054–1065.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, Y., Mishima, H., Sakai, S., Liu, Y. K., Ohyabu, Y., & Uemura, T. (2008). Gene expression analysis of major lineage-defining factors in human bone marrow cells: effect of aging, gender, and age-related disorders. Journal of Orthopaedic Research, 26, 910–917. doi:10.1002/jor.20623.

    Article  CAS  PubMed  Google Scholar 

  18. Chang, H., & Knothe Tate, M. L. (2012). Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Translational Medicine, 1, 480–491. doi:10.5966/sctm.2011-0056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gentile, P., Mattioli-Belmonte, M., Chiono, V., et al. (2012). Bioactive glass/polymer composite scaffolds mimicking bone tissue. Journal of Biomedical Materials Research. Part A, 100, 2654–2667. doi:10.1002/jbm.a.34205.

    Article  PubMed  Google Scholar 

  20. Ringe, J., Leinhase, I., Stich, S., et al. (2008). Human mastoid periosteum-derived stem cells: promising candidates for skeletal tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2, 136–146. doi:10.1002/term.75.

    Article  CAS  PubMed  Google Scholar 

  21. Colnot, C. (2009). Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. Journal of Bone and Mineral Research, 24, 274–282. doi:10.1359/jbmr.081003.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhang, X., Xie, C., Lin, A. S., et al. (2005). Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. Journal of Bone and Mineral Research, 20, 2124–2137.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, X., Awad, H. A., O’Keefe, R. J., Guldberg, R. E., & Schwarz, E. M. (2008). A perspective: engineering periosteum for structural bone graft healing. Clinical Orthopaedics and Related Research, 466, 1777–1787. doi:10.1007/s11999-008-0312-6.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Chen, L., & Wu, J. (2012). Editorial: systems biology for complex disease. Journal of Molecular Cell Biology, 4, 125–126. doi:10.1093/jmcb/mjs022.

    Article  PubMed  Google Scholar 

  25. Ferretti, C., Borsari, V., Falconi, M., et al. (2012). Human periosteum-derived stem cells for tissue engineering applications: the role of VEGF. Stem Cell Reviews, 8, 882–890. doi:10.1007/s12015-012-9374-7.

    Article  CAS  PubMed  Google Scholar 

  26. Ferretti, C., Vozzi, G., Falconi, M., et al. (2014). Role of IGF1 and IGF1/VEGF on Human Mesenchymal Stromal Cells (HMSCs) in bone healing: two sources two fates. Tissue Engineering Part A. doi:10.1089/ten.tea.2013.0453.

    PubMed  Google Scholar 

  27. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for deifying multipotent mesenchymal stem cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  28. Gerdes, J., Schwab, U., Lemke, H., & Stein, H. (1983). Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. International Journal of Cancer, 31, 13–20.

    Article  CAS  Google Scholar 

  29. Ragni, E., Viganò, M., Rebulla, P., Giordano, R., & Lazzari, L. (2013). What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes. Journal of Cellular and Molecular Medicine, 17, 168–180. doi:10.1111/j.1582-4934.2012.01660.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  31. Orsi, G., De Maria, C., Guzzardi, M., Vozzi, F., & Vozzi, G. (2011). HEMETβ: improvement of hepatocyte metabolism mathematical model. Computer Methods in Biomechanics and Biomedical Engineering, 14, 837–851. doi:10.1080/10255842.2010.497145.

    Article  CAS  PubMed  Google Scholar 

  32. Van’t Hof, R. J., & Ralston, S. H. (2001). Nitric oxide and bone. Immunology, 103, 255–261.

    Article  Google Scholar 

  33. Colnot, C., Zhang, X., & Knothe Tate, M. L. (2012). Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. Journal of Orthopaedic Research, 30, 1869–1878. doi:10.1002/jor.22181.

    Article  CAS  PubMed  Google Scholar 

  34. McBride, S. H., Evans, S. F., & Knothe Tate, M. L. (2011). Anisotropic mechanical properties of ovine femoral periosteum and the effects of cryopreservation. Journal of Biomechanics, 44, 1954–1959. doi:10.1016/j.jbiomech.2011.04.036.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ferretti, C., & Mattioli-Belmonte, M. (2014). Periosteum derived stem cells for regenerative medicine proposals: boosting current knowledge. World Journal Stem Cells, 6(3), 266–277. doi:10.4252/wjsc.v6.i3.266.

    Article  Google Scholar 

  36. Moore, S. R., Milz, S., & Knothe Tate, M. L. (2014). Periosteal thickness and cellularity in mid-diaphyseal cross-sections from human femora and tibiae of aged donors. Journal of Anatomy, 224, 142–149. doi:10.1111/joa.12133.

    Article  PubMed  Google Scholar 

  37. Byun, C. H., Koh, J. M., Kim, D. K., Park, S. I., Lee, K. U., & Kim, G. S. (2005). Alpha-lipoic acid inhibits TNF-alpha-induced apoptosis in human bone marrow stromal cells. Journal of Bone and Mineral Research, 20, 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson, W. E., Eisenstein, S. M., & Roberts, S. (2001). Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connect Tissue Reserch, 42, 197–207.

    Article  CAS  Google Scholar 

  39. Burova, E., Borodkina, A., Shatrova, A., & Nikolsky, N. (2013). Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. Oxidative Medicine and Cellular Longevity, 2013, 474931. doi:10.1155/2013/474931.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Fortini, C., Cesselli, D., Beltrami, A. P., et al. (2014). Alteration of Notch signaling and functionality of adipose tissue derived mesenchymal stem cells in heart failure. International Journal of Cardiology, 174, 119–126. doi:10.1016/j.ijcard.2014.03.173.

    Article  CAS  PubMed  Google Scholar 

  41. Hermann, A., List, C., Habisch, H. J., et al. (2010). Age-dependent neuroectodermal differentiation capacity of human mesenchymal stromal cells: limitations for autologous cell replacement strategies. Cytotherapy, 12, 17–30. doi:10.3109/14653240903313941.

    Article  CAS  PubMed  Google Scholar 

  42. Correia-Melo, C., Jurk, D., & Passos, J. F. (2013). Robust multiparametric assessment of cellular senescence. Methods in Molecular Biology, 965, 409–419. doi:10.1007/978-1-62703-239-1_27.

    CAS  PubMed  Google Scholar 

  43. Korotchkina, L. G., Leontieva, O. V., Bukreeva, E. I., Demidenko, Z. N., Gudkov, A. V., & Blagosklonny, M. V. (2010). The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging, 2, 344–352.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Feng, Z., Lin, M., & Wu, R. (2011). The regulation of aging and longevity: a new complex role of p53. Genes & Cancer, 2, 443–452. doi:10.1177/1947601911410223.

    Article  CAS  Google Scholar 

  45. Leontieva, O. V., & Blagosklonny, M. V. (2014). M(o)TOR of pseudo-hypoxic state in aging: rapamycin to the rescue. Cell Cycle, 13, 509–515. doi:10.4161/cc.27973.

    Article  CAS  PubMed  Google Scholar 

  46. Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell, 120, 513–522.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, X., Kua, H. Y., Hu, Y., et al. (2006). p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. Journal of Cell Biology, 172, 115–125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Choi, B. M., Pae, H. O., Jang, S. I., Kim, Y. M., & Chung, H. T. (2002). Review: nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. Journal of Biochemistry and Molecular Biology, 35, 116–126.

    Article  CAS  PubMed  Google Scholar 

  49. Tebbi, A., Guittet, O., Cottet, M. H., Vesin, M. F., & Lepoivre, M. (2011). TAp73 induction by nitric oxide: regulation by checkpoint kinase 1 (CHK1) and protection against apoptosis. Journal of Biological Chemistry, 286, 7873–7884. doi:10.1074/jbc.M110.184879.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ho, W. P., Chan, W. P., Hsieh, M. S., & Chen, R. M. (2009). Runx2-mediated bcl-2 gene expression contributes to nitric oxide protection against hydrogen peroxide-induced osteoblast apoptosis. Journal of Cellular Biochemistry, 108, 1084–1093. doi:10.1002/jcb.22338.

    Article  CAS  PubMed  Google Scholar 

  51. Marcellini, S., Henriquez, J. P., & Bertin, A. (2012). Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. Bioessays, 34, 953–962. doi:10.1002/bies.201200061.

    Article  CAS  PubMed  Google Scholar 

  52. Kaltz, N., Funari, A., Hippauf, S., et al. (2008). In-vivo osteoprogenitor potency of human stromal cells from different tissues does not correlate with expression of POU5F1 or its pseudogenes. Stem Cells, 26, 2419–2424. doi:10.1634/stemcells.2008-0304.

    Article  CAS  PubMed  Google Scholar 

  53. Lengner, C. J., Camargo, F. D., Hochedlinger, K., et al. (2007). Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell, 1, 403–415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Beltrami, A. P., Cesselli, D., Bergamin, N., et al. (2007). Multipotent cells can be generated in vitro from several adult human organs (heart, liver and bone marrow). Blood, 110, 3438–3446.

    Article  CAS  PubMed  Google Scholar 

  55. Greco, S. J., Liu, K., & Rameshwar, P. (2007). Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells, 25, 3143–3154.

    Article  CAS  PubMed  Google Scholar 

  56. Pierantozzi, E., Gava, B., Manini, I., Roviello, F., Marotta, G., Chiavarelli, M., & Sorrentino, V. (2011). Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2. Stem Cells and Development, 20, 915–923. doi:10.1089/scd.2010.0353.

    Article  CAS  PubMed  Google Scholar 

  57. Basu-Roy, U., Ambrosetti, D., Favaro, R., Nicolis, S. K., Mansukhani, A., & Basilico, C. (2010). The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death and Differentiation, 17, 1345–1353. doi:10.1038/cdd.2010.57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Yoon, D. S., Kim, Y. H., Lee, S., Lee, K. M., Park, K. H., Jang, Y., & Lee, J. W. (2014). Interleukin-6 induces the lineage commitment of bone marrow-derived mesenchymal multipotent cells through down-regulation of Sox2 by osteogenic transcription factors. FASEB Journal, 28, 3273–3286. doi:10.1096/fj.13-248567.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This contribution is cofounded by the Italian Ministry of Education, University & Research (MIUR) (Project PRIN 2010, MIND, 2010J8RYS7).

Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Mattioli-Belmonte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferretti, C., Lucarini, G., Andreoni, C. et al. Human Periosteal Derived Stem Cell Potential: The Impact of age. Stem Cell Rev and Rep 11, 487–500 (2015). https://doi.org/10.1007/s12015-014-9559-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9559-3

Keywords

Navigation