Skip to main content

Advertisement

Log in

Eliminating Cancer Stem Cells by Targeting Embryonic Signaling Pathways

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Dramatic advances have been made in the understanding of cancer over the past decade. Prime among those are better appreciation of the biology of cancer and the development of targeted therapies. Despite these improvements, however, most tumors remain refractory to anti-cancer medications and frequently recur. Cancer Stem Cells (CSCs), which in some cases express markers of pluripotency (e.g., Oct-4), share many of the molecular features of normal stem cells. These cells have been hypothesised to play a role in tumor resistance and relapse. They exhibit dependence on many primitive regulatory pathways and may be best viewed in the context of embryonic signaling pathways. In this article, we review important embryonic signaling cascades and their differential expression in CSCs. We also discuss these pathways as actionable targets for novel therapies in hopes that eliminating cancer stem cells will lead to an improvement in overall survival for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Horning, S. J., & Rosenberg, S. A. (1984). The natural history of initially untreated low-grade non-Hodgkin’s lymphomas. The New England Journal of Medicine, 311, 1471–1475.

    Article  CAS  PubMed  Google Scholar 

  2. Durie, B. G., Jacobson, J., Barlogie, B., & Crowley, J. (2004). Magnitude of response with myeloma frontline therapy does not predict outcome: importance of time to progression in southwest oncology group chemotherapy trials. Journal of Clinical Oncology, 22, 1857–1863.

    Article  PubMed  Google Scholar 

  3. Virchow, R. (1855). Editorial archive fuer pathologische. Anatomie und Physiologie fuer klinische Medizin., 8, 23–54.

    Google Scholar 

  4. Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355, 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  5. Gerber, J. M., Smith, B. D., Ngwang, B., et al. (2011). The clinical relevance of acute myeloid leukemia stem cells. Blood, 118, 240a.

    Article  Google Scholar 

  6. Creighton, C. J., Li, X., Landis, M., et al. (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of the National Academy of Sciences, 106, 13820–13825.

    Article  CAS  Google Scholar 

  7. Sigalotti, L., Covre, A., et al. (2008). Cancer testis antigens in human melanoma stem cells: expression, distribution, and methylation status. Journal of Cellular Physiology, 215(2), 287–291. doi:10.1002/jcp.21380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yawata, T., Nakai, E., et al. (2010). Enhanced expression of cancer testis antigen genes in glioma stem cells. Molecular Carcinogenesis, 49(6), 532–544. doi:10.1002/mc.20614.

    Article  CAS  PubMed  Google Scholar 

  9. Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284, 770–776.

    Article  CAS  PubMed  Google Scholar 

  10. Takebe, N., Harris, P. J., Warren, R. Q., & Ivy, S. P. (2011). Targeting cancer stem cells by inhibiting Wnt, notch, and hedgehog pathways. Nature reviews Clinical oncology, 8, 97–106.

    Article  CAS  PubMed  Google Scholar 

  11. Dontu, G., et al. (2004). Role of notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6, R605–R615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kadesch, T. (2000). Notch signaling: a dance of proteins changing partners. Experimental Cell Research, 260, 1–8.

    Article  CAS  PubMed  Google Scholar 

  13. Allenspach, E. J., Maillard, I., Aster, J. C., & Pear, W. S. (2002). Notch signaling in cancer. Cancer Biology & Therapy, 1, 466–476.

    Article  Google Scholar 

  14. Koch, U., & Radtke, F. (2007). Notch and cancer: a double-edged sword. Cellular and Molecular Life Science, 64, 2746–2762.

    Article  CAS  Google Scholar 

  15. Roy, M., Pear, W. S., & Aster, J. C. (2007). The multifaceted role of notch in cancer. Current Opinion in Genetics & Development, 17, 52–59.

    Article  CAS  Google Scholar 

  16. Fan, X., Khaki, L., Zhu, T. S., et al. (2010). Notch pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells, 28, 5–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan, X., Matsui, W., Khaki, L., et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Research, 66, 7445–7452.

    Article  CAS  PubMed  Google Scholar 

  18. Farnie, G., & Clarke, R. B. (2007). Mammary stem cells and breast cancer-role of notch signalling. Stem Cell Reviews, 3, 169–175.

    Article  CAS  PubMed  Google Scholar 

  19. Farnie, G., Clarke, R. B., Spence, K., et al. (2007). Novel cell culture technique for primary ductal carcinoma in situ: role of notch and epidermal growth factor receptor signaling pathways. Journal of the National Cancer Institute, 99, 616–627.

    Article  CAS  PubMed  Google Scholar 

  20. Sansone, P., Storci, G., Tavolari, S., et al. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. The Journal of Clinical Investigation, 117, 3988–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magnifico, A., Albano, L., Campaner, S., et al. (2009). Tumorinitiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are trastuzumab sensitive. Clinical Cancer Research, 15, 2010–2021.

    Article  CAS  PubMed  Google Scholar 

  22. Clevers, H. (2006). Wnt/β-catenin signaling in development and disease. Cell, 127(3), 469–480.

    Article  CAS  PubMed  Google Scholar 

  23. Grigoryan, T., Wend, P., Klaus, A., & Birchmeier, W. (2008). Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of betacatenin in mice. Genes & Development, 22, 2308–2341.

    Article  CAS  Google Scholar 

  24. Angers, S., & Moon, R. T. (2009). Proximal events in Wnt signal transduction. Nature Reviews Molecular Cell Biology, 10, 468–477.

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi-Yanaga, F., & Kahn, M. (2010). Targeting Wnt signaling: can We safely eradicate cancer stem cells? Clinical Cancer Research, 16, 3153–3162.

    Article  CAS  PubMed  Google Scholar 

  26. Hecht, A., Vleminckx, K., Stemmler, M. P., van Roy, F., & Kemler, R. (2000). The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. The EMBO Journal, 19, 1839–1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takemaru, K. I., & Moon, R. T. (2000). The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. The Journal of Cell Biology, 149, 249–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagahata, T., Shimada, T., Harada, A., et al. (2003). Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the drosophila disheveled gene, in primary breast cancers. Cancer Science, 94, 515–518.

    Article  CAS  PubMed  Google Scholar 

  29. Ugolini, F., Adélaïde, J., Charafe-Jauffret, E., et al. (1999). Differential expression assay of chromosome arm 8p genes identifies frizzled-related (FRP1/FRZB) and fibroblast growth factor receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene, 18, 1903–1910.

    Article  CAS  PubMed  Google Scholar 

  30. Jamieson, C. H., Weissman, I. L., & Passegue, E. (2004). Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell, 6, 531–533.

    CAS  PubMed  Google Scholar 

  31. Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., Goodell, M. A., & Brenner, M. K. (2004). A distinct “side population” of cells with high drug efflux capacity inhuman tumor cells. Proceedings of the National Academy of Sciences, 101, 14228–14233.

    Article  CAS  Google Scholar 

  32. Chan, T. A. (2002). Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. The Lancet Oncology, 3, 166–174.

    Article  CAS  PubMed  Google Scholar 

  33. Thun, M. J., Henley, S. J., & Patrono, C. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. Journal of the National Cancer Institute, 94, 252–266.

    Article  CAS  PubMed  Google Scholar 

  34. Baron, J. A., Cole, B. F., Sandler, R. S., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas. The New England Journal of Medicine, 348, 891–899.

    Article  CAS  PubMed  Google Scholar 

  35. Shah, S., Hecht, A., Pestell, R., & Byers, S. W. (2003). Trans-repression of β- catenin activity by nuclear receptors. The Journal of Biological Chemistry, 278, 48137–48145.

    Article  CAS  PubMed  Google Scholar 

  36. Fujii, N., You, L., Xu, Z., et al. (2007). An antagonist of dishevelled proteinprotein interaction suppresses β-catenin-dependent tumor cell growth. Cancer Research, 67, 573–579.

    Article  CAS  PubMed  Google Scholar 

  37. Ingham, P. W., & McMahon, A. P. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes & Development, 15, 3059–3087.

    Article  CAS  Google Scholar 

  38. Fuccillo, M., Joyner, A. L., & Fishell, G. (2006). Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nature Reviews Neuroscience, 7, 772–783.

    Article  CAS  PubMed  Google Scholar 

  39. Stone, D. M., et al. (1996). The tumor-suppressor gene patched encodes a candidate receptor for sonic hedgehog. Natur., 384, 129–134.

    Article  CAS  Google Scholar 

  40. Ingham, P. W., & McMahon, A. P. (2011). Hedgehog signaling in animal development: paradigms and principles. Genes & Development, 15, 3059–3087.

    Article  Google Scholar 

  41. Hahn, H., et al. (1996). Mutations of the human homolog of drosophila patched in the nevoid basal cell carcinoma syndrome. Cell, 85, 841–851.

    Article  CAS  PubMed  Google Scholar 

  42. Peacock, C. D., Wang, Q., Gesell, G. S., Corcoran-Schwartz, I. M., Jones, E., Kim, J., et al. (2007). Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proceedings of the National Academy of Sciences, 104, 4048–4053.

    Article  CAS  Google Scholar 

  43. Zhao, C., Chen, A., Jamieson, C. H., Fereshteh, M., Abrahamsson, A., Blum, J., et al. (2009). Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature, 458, 776–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66, 6063–6071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Varnat, F., et al. (2009). Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Molecular Medicine, 1, 338–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taipale, J., et al. (2000). Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature, 406, 1005–1009.

    Article  CAS  PubMed  Google Scholar 

  47. McMillan, R., & Matsui, W. (2012). Molecular pathways: the hedgehog signaling pathway in cancer. Clinical Cancer Research, 18, 4883–4888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. LoRusso, P. M., Rudin, C. M., Reddy, J. C., Tibes, R., Weiss, G. J., Borad, M. J., et al. (2011). Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clinical Cancer Research, 17, 2502–2511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15, 501–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Y., Lui, Y., Malek, S. N., Zheng, P., & Liu, Y. (2011). Targeting HIF1a eliminates cancer stem cells in hematological malignancies. Cell Stem Cell, 8, 399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Douglas Smith.

Ethics declarations

Authors declare that there are no relevant competing interests. Also, no funding was used in preparation of this manuscript.

Author Contribution

OO and BDS are responsible for the conception and design of the manuscript. OO wrote the first draft. BDS critically revised the draft. OO and BDS finalised a final version and approved it.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oren, O., Smith, B.D. Eliminating Cancer Stem Cells by Targeting Embryonic Signaling Pathways. Stem Cell Rev and Rep 13, 17–23 (2017). https://doi.org/10.1007/s12015-016-9691-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9691-3

Keywords

Navigation