Skip to main content
Log in

Presence of Endogenous PACAP-38 Ameliorated Intestinal Cold Preservation Tissue Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cold preservation tissue injury remains an unsolved problem during small intestinal transplantation. Pituitary adenylate cyclase-activating polypeptide (PACAP) plays a central role in the intestinal physiology. The aim of our study was to compare the cold ischemic injury in wild-type and PACAP-38 deficient mice after small bowel cold storage. Cold ischemia was produced with small bowel preservation in a University of Wisconsin solution at 4°C in wild-type (n = 35) mice for 1 h (GI), for 3 h (GII), and for 6 h (GIII); and in PACAP-38 deficient (n = 35) mice for 1 h (GIV), for 3 h (GV), and for 6 h (GVI). Small bowel biopsies were collected after laparotomy (Control) and at the end of the ischemia periods. To determine oxidative stress parameters, malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. In PACAP-38 deficient animals, tissue lipid peroxidation was elevated. These changes were significant after 6 h (153.04 ± 7.2) compared to sham-operated (110.44 ± 5.5) and compared to wild-type results (120.0 ± 1.1 µmol/g, p < 0.05). Meanwhile, the capacity and activity of the endogenous antioxidant system decreased significantly after 3 and 6 h preservation (GSH: 808.7 ± 5.2; 720.4 ± 8.7 vs. 910.4 ± µmol/g; SOD: 125.1 ± 1.4; 103.3 ± 1.9 vs. 212.11 ± 5.8 IU/g). Qualitative and quantitative histological results showed destruction of the mucous, submucous layers, and crypts in PACAP-38 deficient mice compared to wild-type tissues. These processes depended on the time of the cold preservation periods. Our present study showed that the presence of PACAP-38 in the small bowel tissue has a key role in the protection against intestinal cold preservation injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Allais A, Burel D, Isaac ER et al (2007) Altered cerebellar development in mice lacking pituitary adenylate cyclase activating polypeptide. Eur J NeuroSci 25:2604–2618

    Article  PubMed  Google Scholar 

  • Armstrong BD, Abad C, Chhith S et al (2008) Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary adenylyl cyclase activating peptide. Neuroscience 151:63–73

    Article  CAS  PubMed  Google Scholar 

  • Azuma YT, Hagi K, Shintani N et al (2008) PACAP provides colonic protection against dextran sodium sulfate induced colitis. J Cell Physiol 216:111–119

    Article  CAS  PubMed  Google Scholar 

  • Balaz P, Matia I, Jackanin S et al (2004) Morphological changes of small bowel graft in Wistar rats after preservation injury. Bratislavske Lekaske Listy 105:62–64

    CAS  Google Scholar 

  • Carden DL, Granger DN (2000) Pathophysiology of ischemia-reperfusion injury. J Pathol 190:255–266

    Article  CAS  PubMed  Google Scholar 

  • Ekblad E (1999) Pharmacological evidence for both neuronal and smooth muscular PAC1 receptors and a VIP-specific receptor in rat colon. Regul Pept 85:87–92

    Article  CAS  PubMed  Google Scholar 

  • Ermilov LG, Schmalz PF, Miller SM, Szurszewski JH (2004) PACAP modulation of the colon-inferior mesenteric ganglion reflex in the guinea pig. J Physiol 560:231–247

    Article  CAS  PubMed  Google Scholar 

  • Ferencz A, Szanto Z, Borsiczky B et al (2002) The effects of preconditioning on the oxidative stress in small bowel autotransplantation. Surgery 132:877–884

    Article  PubMed  Google Scholar 

  • Ferencz A, Racz B, Tamas A et al (2009a) Changes and effect of PACAP-38 on intestinal ischemia-reperfusion and autotransplantation. Transplant Proc 41:57–59

    Article  CAS  PubMed  Google Scholar 

  • Ferencz A, Racz B, Tamas A et al (2009b) Influence of PACAP on oxidative stress and tissue injury following small bowel autotransplantation. J Mol Neurosci 37:168–176

    Article  CAS  PubMed  Google Scholar 

  • Ferencz A, Reglodi D, Kalmar-Nagy K et al (2009c) Influence of pituitary adenylate cyclase-activating polypeptide on the activation of mitogen activated protein kinases following small bowel cold preservation. Transplant Proc 41:60–62

    Article  CAS  PubMed  Google Scholar 

  • Ferencz A, Nedvig K, Lorinczy D (2010) DSC examination of intestinal tissue following cold preservation. Thermochimica Acta 497:41–45

    Article  CAS  Google Scholar 

  • Fronek J, Divny P, Vávrová J, Ryska M (2006) Preservation injury of the small bowel graft in rats. European Surgery 38:439–444

    Article  Google Scholar 

  • Horvath G, Mark L, Brubel R et al (2010) Mice deficient in pituitary adenylate cyclase activating polypeptide display increased sensitivity to renal oxidative stress in vitro. Neurosci Lett 469:70–74

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Shintani N, Tanaka K et al (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase activating polypeptide (PACAP). Proc Natl Acad Sci USA 98:13355–13360

    Article  CAS  PubMed  Google Scholar 

  • Kirchgessner AL, Liu MT (2001) Pituitary adenylate cyclase activating polypeptide (PACAP) in the enteropancreatic innervation. Anat Rec 262:91–100

    Article  CAS  PubMed  Google Scholar 

  • Koves K, Arimura A, Vigh S, Somogyvari-Vigh A, Miller J (1993) Immunohistochemical localization of PACAP in the ovine digestive system. Peptides 14:449–455

    Article  CAS  PubMed  Google Scholar 

  • Lauffer JM, Modlin IM, Tang LH (1999) Biological relevance of pituitary adenylate cyclase activating polypeptide (PACAP) in the gastrointestinal tract. Regul Pept 84:1–12

    Article  CAS  Google Scholar 

  • Lelievre V, Favrais G, Abad C et al (2007) Gastrointestinal dysfunction in mice with a targeted mutation in the gene encoding vasoactive intestinal polypeptide: a model for the study of intestinal ileus and Hirschprung's disease. Peptides 28:1688–1699

    Article  CAS  PubMed  Google Scholar 

  • Mallick IH, Yang W, Winslet MC, Seifalian AM (2004) Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 49:1359–1577

    Article  CAS  PubMed  Google Scholar 

  • Mallick IH, Yang W, Winslet MC (2005) Ischemic preconditioning improves microcircular perfusion and oxygenation following reperfusion injury of the intestine. Br J Surg 92:1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Mao YK, Wang YF, Moogk C et al (1998) Locations and molecular forms of PACAP and sites and characteristics of PACAP receptors in canine ileum. Am J Physiol 274:217–225

    Google Scholar 

  • Mittal A, Phillips ARJ, Loveday B, Windsor JA (2008) The potential role for xanthine oxidase inhibition in major intra-abdominal surgery. World J Surg 32:288–295

    Article  PubMed  Google Scholar 

  • Nedvig K, Ferencz A, Roth E, Lorinczy D (2009) DSC examination of intestinal tissue following warm ischemia and reperfusion injury. J Therm Anal Calorim 95:775–779

    Article  CAS  Google Scholar 

  • Nemetz N, Abad A, Lawson G et al (2008) Induction of colitis and rapid development of colorectal tumors in mice deficient in the neuropeptide PACAP. Int J Cancer 122:1803–1809

    Article  CAS  PubMed  Google Scholar 

  • Ohtaki H, Nakamachi T, Dohi K, Shioda S (2008) Role of PACAP in ischemic neural death. J Mol Neurosci 36:16–25

    Article  CAS  PubMed  Google Scholar 

  • Park PO, Haglund U, Bulkley GB, Falt K (1990) The sequence of development of intestinal tissue injury after strangulation ischemia and reperfusion. Surgery 107:574–580

    CAS  PubMed  Google Scholar 

  • Racz B, Gasz B, Borsiczky B et al (2007) Protective effects of pituitary adenylate cyclase activating polypeptide in endothelial cells against oxidative stress-induced apoptosis. Gen Comp Endocrinol 153:115–123

    Article  CAS  PubMed  Google Scholar 

  • Reglodi D, Fabian Z, Tamas A et al (2004) Effects of PACAP on in vitro and in vivo neuronal cell death, platelet aggregation, and production of reactive oxygen radicals. Regul Pept 123:51–59

    Article  CAS  PubMed  Google Scholar 

  • Salomon R, Couvineau A, Rouyer-Fessard C et al (1993) Characterization of a common VIP–PACAP receptor in human small intestinal epithelium. Am J Physiol 264:294–300

    Google Scholar 

  • Schulz S, Rocken C, Mawrin C, Weise W, Hollt V, Schulz S (2004) Immunocytochemical identification of VPAC1, VPAC2, and PAC1 receptors in normal and neoplastic human tissues with subtype-specific antibodies. Clin Cancer Res 10:8235–8242

    Article  CAS  PubMed  Google Scholar 

  • Somogyvari-Vigh A, Reglodi D (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide-review. Curr Pharm Des 10:2861–2889

    Article  CAS  PubMed  Google Scholar 

  • Vaudry D, Pamantung TF, Basille M et al (2002) PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur J NeuroSci 15:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Vaudry D, Hamelink C, Damadzic R, Eskay L, Gonzalez B, Eiden LE (2005) Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides 26:2518–2524

    Article  CAS  PubMed  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  PubMed  Google Scholar 

  • Yamada K, Matsuzaki S, Hattori T et al (2010) Increased stathmin1 expression in the dentate gyrus of mice causes abnormal axonal arborisation. PloSOne 5:e8596

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Hungarian Scientific Research Fund (Grant OTKA PD77474, K72592, K73044, and CNK78480), ETT278-04/2009, Bolyai Scholarship of the Hungarian Academy of Sciences and Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ferencz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferencz, A., Weber, G., Helyes, Z. et al. Presence of Endogenous PACAP-38 Ameliorated Intestinal Cold Preservation Tissue Injury. J Mol Neurosci 42, 428–434 (2010). https://doi.org/10.1007/s12031-010-9352-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9352-y

Keywords

Navigation