Skip to main content

Advertisement

Log in

Expression, Polyubiquitination, and Therapeutic Potential of Recombinant E6E7 from HPV16 Antigens Fused to Ubiquitin

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Ubiquitin–proteasome system plays an essential role in the immune response due to its involvement in the antigen generation and presentation to CD8+ T cells. Hereby, ubiquitin fused to antigens has been explored as an immunotherapeutic strategy that requires the activation of cytotoxic T lymphocytes. Here we propose to apply this ubiquitin fusion approach to a recombinant vaccine against human papillomavirus 16-infected cells. E6E7 multi-epitope antigen was fused genetically at its N- or C-terminal end to ubiquitin and expressed in Escherichia coli as inclusion bodies. The antigens were solubilized using urea and purified by nickel affinity chromatography in denatured condition. Fusion of ubiquitin to E6E7 resulted in marked polyubiquitination in vitro mainly when fused to the E6E7 N-terminal. When tested in a therapeutic scenario, the fusion of ubiquitin to E6E7 reinforced the anti-tumor protection and increased the E6/E7-specific cellular immune responses. Present results encourage the investigation of the adjuvant potential of the ubiquitin fusion to recombinant vaccines requiring CD8+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ub:

Ubiquitin

MHC:

Major histocompatibility complex

APC:

Antigen-presenting cells

LB:

Luria–Bertani

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

PBS:

Phosphate-buffered saline

DTT:

1,4-Dithiothreitol

References

  1. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  CAS  Google Scholar 

  2. Coux, O., Tanaka, K., & Goldberg, A. L. (1996). Structure and functions of the 20S and 26S proteasomes. Annual Review of Biochemistry, 65, 801–847.

    Article  CAS  Google Scholar 

  3. Hochstrasser, M. (1996). Ubiquitin-dependent protein degradation. Annual Review of Genetics, 30, 405–439.

    Article  CAS  Google Scholar 

  4. Aldarouish, M., Wang, H., Zhou, M., Hu, H. M., & Wang, L. X. (2015). Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine. Journal of Experimental & Clinical Cancer Research, 34, 34.

    Article  Google Scholar 

  5. Chou, B., Hiromatsu, K., Okano, S., Ishii, K., Duan, X., Sakai, T., et al. (2012). Antiangiogenic tumor therapy by DNA vaccine inducing aquaporin-1-specific CTL based on ubiquitin–proteasome system in mice. Journal of Immunology, 189, 1618–1626.

    Article  CAS  Google Scholar 

  6. Eslami, N. S., Shokrgozar, M. A., Mousavi, A., Azadmanesh, K., Nomani, A., Apostolopoulos, V., et al. (2012). Simultaneous immunisation with a Wilms’ tumour 1 epitope and its ubiquitin fusions results in enhanced cell mediated immunity and tumour rejection in C57BL/6 mice. Molecular Immunology, 51, 325–331.

    Article  CAS  Google Scholar 

  7. Velders, M. P., Weijzen, S., Eiben, G. L., Elmishad, A. G., Kloetzel, P. M., Higgins, T., et al. (2001). Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. Journal of Immunology, 166, 5366–5373.

    Article  CAS  Google Scholar 

  8. Yin, H., Zhao, L., Wang, T., Zhou, H., He, S., & Cong, H. (2015). A Toxoplasma gondii vaccine encoding multistage antigens in conjunction with ubiquitin confers protective immunity to BALB/c mice against parasite infection. Parasites & Vectors, 8, 498.

    Article  Google Scholar 

  9. Ciechanover, A. (2005). N-terminal ubiquitination. Methods in Molecular Biology, 301, 255–270.

    CAS  Google Scholar 

  10. Ciechanover, A., & Ben-Saadon, R. (2004). N-terminal ubiquitination: more protein substrates join in. Trends in Cell Biology, 14, 103–106.

    Article  CAS  Google Scholar 

  11. Aviel, S., Winberg, G., Massucci, M., & Ciechanover, A. (2000). Degradation of the epstein-barr virus latent membrane protein 1 (LMP1) by the ubiquitin–proteasome pathway. Targeting via ubiquitination of the N-terminal residue. The Journal of Biological Chemistry, 275, 23491–23499.

    Article  CAS  Google Scholar 

  12. Bloom, J., Amador, V., Bartolini, F., DeMartino, G., & Pagano, M. (2003). Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell, 115, 71–82.

    Article  CAS  Google Scholar 

  13. Coulombe, P., Rodier, G., Bonneil, E., Thibault, P., & Meloche, S. (2004). N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Molecular and Cellular Biology, 24, 6140–6150.

    Article  CAS  Google Scholar 

  14. Fajerman, I., Schwartz, A. L., & Ciechanover, A. (2004). Degradation of the Id2 developmental regulator: targeting via N-terminal ubiquitination. Biochemical and Biophysical Research Communications, 314, 505–512.

    Article  CAS  Google Scholar 

  15. Ikeda, M., Ikeda, A., & Longnecker, R. (2002). Lysine-independent ubiquitination of Epstein-Barr virus LMP2A. Virology, 300, 153–159.

    Article  CAS  Google Scholar 

  16. Reinstein, E., Scheffner, M., Oren, M., Ciechanover, A., & Schwartz, A. (2000). Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin–proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene, 19, 5944–5950.

    Article  CAS  Google Scholar 

  17. Breitschopf, K., Bengal, E., Ziv, T., Admon, A., & Ciechanover, A. (1998). A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO Journal, 17, 5964–5973.

    Article  CAS  Google Scholar 

  18. Papagatsias, T., Athanasopoulos, T., Meiser, A., Benlahrech, A., Li, F., Self, S., et al. (2009). Using ubiquitin fusion to augment CD8+ T cell immune responses against HIV-1 antigens. Retrovirology. doi:10.1186/1742-4690-6-S3-P303.

    Google Scholar 

  19. Rodriguez, F., An, L. L., Harkins, S., Zhang, J., Yokoyama, M., Widera, G., et al. (1998). DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination. Journal of Virology, 72, 5174–5181.

    CAS  Google Scholar 

  20. Setz, C., Friedrich, M., Hahn, S., Dorrie, J., Schaft, N., Schuler, G., et al. (2013). Just one position-independent lysine residue can direct MelanA into proteasomal degradation following N-terminal fusion of ubiquitin. PLoS ONE, 8, e55567.

    Article  CAS  Google Scholar 

  21. Zhang, M., Ishii, K., Hisaeda, H., Murata, S., Chiba, T., Tanaka, K., et al. (2004). Ubiquitin-fusion degradation pathway plays an indispensable role in naked DNA vaccination with a chimeric gene encoding a syngeneic cytotoxic T lymphocyte epitope of melanocyte and green fluorescent protein. Immunology, 112, 567–574.

    Article  CAS  Google Scholar 

  22. Andersson, H. A., & Barry, M. A. (2004). Maximizing antigen targeting to the proteasome for gene-based vaccines. Molecular Therapy, 10, 432–446.

    Article  CAS  Google Scholar 

  23. Johnson, E. S., Ma, P. C., Ota, I. M., & Varshavsky, A. (1995). A proteolytic pathway that recognizes ubiquitin as a degradation signal. Journal of Biological Chemistry, 270, 17442–17456.

    Article  CAS  Google Scholar 

  24. Chen, J. H., Yu, Y. S., Liu, H. H., Chen, X. H., Xi, M., Zang, G. Q., et al. (2011). Ubiquitin conjugation of hepatitis B virus core antigen DNA vaccine leads to enhanced cell-mediated immune response in BALB/c mice. Hepatitis Monthly, 11, 620–628.

    Article  Google Scholar 

  25. Duan, X., Hisaeda, H., Shen, J., Tu, L., Imai, T., Chou, B., et al. (2006). The ubiquitin–proteasome system plays essential roles in presenting an 8-mer CTL epitope expressed in APC to corresponding CD8+ T cells. International Immunology, 18, 679–687.

    Article  CAS  Google Scholar 

  26. van der Burg, S. H., & Melief, C. J. (2011). Therapeutic vaccination against human papilloma virus induced malignancies. Current Opinion in Immunology, 23, 252–257.

    Article  Google Scholar 

  27. Hellner, K., & Munger, K. (2011). Human papillomaviruses as therapeutic targets in human cancer. Journal of Clinical Oncology, 29, 1785–1794.

    Article  Google Scholar 

  28. Leachman, S. A., Shylankevich, M., Slade, M. D., Levine, D., Sundaram, R. K., Xiao, W., et al. (2002). Ubiquitin-fused and/or multiple early genes from cottontail rabbit papillomavirus as DNA vaccines. Journal of Virology, 76, 7616–7624.

    Article  CAS  Google Scholar 

  29. Park, M. J., Kim, E. K., Han, J. Y., Cho, H. W., Sohn, H. J., Kim, S. Y., et al. (2010). Fusion of the Human Cytomegalovirus pp65 antigen with both ubiquitin and ornithine decarboxylase additively enhances antigen presentation to CD8(+) T cells in human dendritic cells. Human Gene Therapy, 21, 957–967.

    Article  CAS  Google Scholar 

  30. Sasawatari, S., Tadaki, T., Isogai, M., Takahara, M., Nieda, M., & Kakimi, K. (2006). Efficient priming and expansion of antigen-specific CD8+ T cells by a novel cell-based artificial APC. Immunology and Cell Biology, 84, 512–521.

    Article  CAS  Google Scholar 

  31. de Oliveira, L. M., Morale, M. G., Chaves, A. A., Cavalher, A. M., Lopes, A. S., Diniz Mde, O., et al. (2015). Design, immune responses and anti-tumor potential of an HPV16 E6E7 multi-epitope vaccine. PLoS ONE, 10, e0138686.

    Article  Google Scholar 

  32. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  33. Ramos, C. R., Abreu, P. A., Nascimento, A. L., & Ho, P. L. (2004). A high-copy T7 Escherichia coli expression vector for the production of recombinant proteins with a minimal N-terminal His-tagged fusion peptide. Brazilian Journal of Medical and Biological Research, 37, 1103–1109.

    Article  CAS  Google Scholar 

  34. Froger, A., & Hall, J. E. (2007). Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments, 1, 253.

    Google Scholar 

  35. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  36. Zhang, M., Obata, C., Hisaeda, H., Ishii, K., Murata, S., Chiba, T., et al. (2005). A novel DNA vaccine based on ubiquitin–proteasome pathway targeting `self’-antigens expressed in melanoma/melanocyte. Gene Therapy, 12, 1049–1057.

    Article  CAS  Google Scholar 

  37. Brandsma, J. L., Shlyankevich, M., Zelterman, D., & Su, Y. (2007). Therapeutic vaccination of rabbits with a ubiquitin-fused papillomavirus E1, E2, E6 and E7 DNA vaccine. Vaccine, 25, 6158–6163.

    Article  CAS  Google Scholar 

  38. Xiang, R., Lode, H. N., Chao, T. H., Ruehlmann, J. M., Dolman, C. S., Rodriguez, F., et al. (2000). An autologous oral DNA vaccine protects against murine melanoma. Proceedings of the National Academy of Sciences of the United States of America, 97, 5492–5497.

    Article  CAS  Google Scholar 

  39. Yi, T., Sun, S., Huang, Y., & Chen, Y. (2015). Prokaryotic expression and mechanism of action of alpha-helical antimicrobial peptide A20L using fusion tags. BMC Biotechnology, 15, 69.

    Article  Google Scholar 

  40. Lowe, A. J., Bardliving, C. L., Huang, C. J., Teixeira, L. M., Damasceno, L. M., Anderson, K. A., et al. (2011). Expression and purification of cGMP grade NY-ESO-1 for clinical trials. Biotechnology Progress, 27, 435–441.

    Article  CAS  Google Scholar 

  41. Qian, S. B., Ott, D. E., Schubert, U., Bennink, J. R., & Yewdell, J. W. (2002). Fusion proteins with COOH-terminal ubiquitin are stable and maintain dual functionality in vivo. Journal of Biological Chemistry, 277, 38818–38826.

    Article  CAS  Google Scholar 

  42. Lee, J. C., Wang, G. X., Schickling, O., & Peter, M. E. (2005). Fusing DEDD with ubiquitin changes its intracellular localization and apoptotic potential. Apoptosis, 10, 1483–1495.

    Article  CAS  Google Scholar 

  43. Groothuis, T. A., & Neefjes, J. (2005). The many roads to cross-presentation. The Journal of Experimental Medicine, 202, 1313–1318.

    Article  CAS  Google Scholar 

  44. Amigorena, S., & Savina, A. (2010). Intracellular mechanisms of antigen cross presentation in dendritic cells. Current Opinion in Immunology, 22, 109–117.

    Article  CAS  Google Scholar 

  45. Joffre, O. P., Segura, E., Savina, A., & Amigorena, S. (2012). Cross-presentation by dendritic cells. Nature Reviews Immunology, 12, 557–569.

    Article  CAS  Google Scholar 

  46. Herath, S., Benlahrech, A., Papagatsias, T., Athanasopoulos, T., Bouzeboudjen, Z., Hervouet, C., et al. (2014). Fusion of ubiquitin to HIV gag impairs human monocyte-derived dendritic cell maturation and reduces ability to induce gag T cell responses. PLoS ONE, 9, e88327.

    Article  Google Scholar 

  47. Vidalin, O., Tanaka, E., Spengler, U., Trepo, C., & Inchauspe, G. (1999). Targeting of hepatitis C virus core protein for MHC I or MHC II presentation does not enhance induction of immune responses to DNA vaccination. DNA and Cell Biology, 18, 611–621.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fapesp (2010/04490-4 and 2007/51698-7), CNPq (304467/2010-3 and 306992/2014-0), and Fundação Butantan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo L. Ho.

Ethics declarations

Conflicts of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, L.M.F., Morale, M.G., Chaves, A.A.M. et al. Expression, Polyubiquitination, and Therapeutic Potential of Recombinant E6E7 from HPV16 Antigens Fused to Ubiquitin. Mol Biotechnol 59, 46–56 (2017). https://doi.org/10.1007/s12033-016-9990-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9990-6

Keywords

Navigation