Skip to main content

Advertisement

Log in

GDNF is Involved in the Barrier-Inducing Effect of Enteric Glial Cells on Intestinal Epithelial Cells Under Acute Ischemia Reperfusion Stimulation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acute intestinal ischemia reperfusion (IR) injury is often associated with intestinal epithelial barrier (IEB) dysfunction. Enteric glial cells (EGCs) play an essential role in maintaining the integrity of IEB functions. However, the precise mechanism of EGCs under IR stimulation remains unclear. Here, we report that EGCs are closely involved in the modulation of IEB functions in response to IR challenge. The intestinal IR treatment led to the significant upregulation of the EGC activation marker, glial fibrillary acidic protein, accompanied by the increasing abundance of glial-derived neurotrophic factor (GDNF) and inducible nitric oxidase (iNOS) proteins, which was also confirmed in in vitro hypoxia reoxygenation (HR) tests. Co-culturing with EGCs attenuated the tight junctional abnormalities, blocked the downregulation of ZO-1 and occludin protein expression, and relieved the decrease of permeability of intestinal epithelial cell (IEC) monolayers under HR treatment. Furthermore, exogenous GDNF administration displays the barrier-protective effects similar to EGCs against HR stimulation, while RNA interference-mediated knockdown of GDNF significantly inhibited the protective capability of EGCs. The expression of both GDNF and iNOS proteins of EGCs was significantly upregulated by co-culturing with IECs, which was further increased by HR treatment. Interestingly, through inhibiting iNOS activity, the barrier-protective effect of EGCs was influenced in normal condition but enhanced in HR condition. These results suggest that GDNF plays an important role in the barrier-protective mechanism of activated EGCs under IR stimulation, whereas EGCs (via iNOS release) are also involved in intestinal inflammation response, which may contribute to IEB damage induced by IR injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grotz MR, Deitch EA, Ding J, Xu D, Huang Q, Regel G (1999) Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann Surg 229(4):478–486

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Lu YZ, Wu CC, Huang YC, Huang CY, Yang CY, Lee TC, Chen CF, Yu LC (2012) Neutrophil priming by hypoxic preconditioning protects against epithelial barrier damage and enteric bacterial translocation in intestinal ischemia/reperfusion. Lab Investig 92(5):783–796. doi:10.1038/labinvest.2012.11

    Article  PubMed  CAS  Google Scholar 

  3. Rock P, Yao Z (2002) Ischemia reperfusion injury, preconditioning and critical illness. Curr Opin Anaesthesiol 15(2):139–146

    Article  PubMed  Google Scholar 

  4. Neunlist M, Van Landeghem L, Mahe MM, Derkinderen P, des Varannes SB, Rolli-Derkinderen M (2013) The digestive neuronal–glial–epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 10(2):90–100. doi:10.1038/nrgastro.2012.221

    Article  PubMed  CAS  Google Scholar 

  5. Ruhl A (2005) Glial cells in the gut. Neurogastroenterol Motil 17(6):777–790. doi:10.1111/j.1365-2982.2005.00687.x

    Article  PubMed  CAS  Google Scholar 

  6. Abdo H, Mahe MM, Derkinderen P, Bach-Ngohou K, Neunlist M, Lardeux B (2012) The omega-6 fatty acid derivative 15-deoxy-Delta(1)(2), (1)(4)-prostaglandin J2 is involved in neuroprotection by enteric glial cells against oxidative stress. J Physiol 590(Pt 11):2739–2750. doi:10.1113/jphysiol.2011.222935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Cabarrocas J, Savidge TC, Liblau RS (2003) Role of enteric glial cells in inflammatory bowel disease. Glia 41(1):81–93. doi:10.1002/glia.10169

    Article  PubMed  Google Scholar 

  8. Neunlist M, Van Landeghem L, Bourreille A, Savidge T (2008) Neuro-glial crosstalk in inflammatory bowel disease. J Intern Med 263(6):577–583. doi:10.1111/j.1365-2796.2008.01963.x

    Article  PubMed  CAS  Google Scholar 

  9. Savidge TC, Sofroniew MV, Neunlist M (2007) Starring roles for astroglia in barrier pathologies of gut and brain. Lab Investig 87(8):731–736. doi:10.1038/labinvest.3700600

    Article  PubMed  Google Scholar 

  10. Bassotti G, Villanacci V, Maurer CA, Fisogni S, Di Fabio F, Cadei M, Morelli A, Panagiotis T, Cathomas G, Salerni B (2006) The role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation. Gut 55(1):41–46. doi:10.1136/gut.2005.073197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, Mucke L, Johnson MH, Sofroniew MV (1998) Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93(2):189–201

    Article  PubMed  CAS  Google Scholar 

  12. Steinkamp M, Geerling I, Seufferlein T, von Boyen G, Egger B, Grossmann J, Ludwig L, Adler G, Reinshagen M (2003) Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology 124(7):1748–1757

    Article  PubMed  CAS  Google Scholar 

  13. Zhang DK, He FQ, Li TK, Pang XH, de Cui J, Xie Q, Huang XL, Gan HT (2010) Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J Pathol 222(2):213–222. doi:10.1002/path.2749

    Article  PubMed  CAS  Google Scholar 

  14. Koury J, Deitch EA, Homma H, Abungu B, Gangurde P, Condon MR, Lu Q, Xu DZ, Feinman R (2004) Persistent HIF-1alpha activation in gut ischemia/reperfusion injury: potential role of bacteria and lipopolysaccharide. Shock 22(3):270–277

    Article  PubMed  CAS  Google Scholar 

  15. von Boyen GB, Steinkamp M, Reinshagen M, Schafer KH, Adler G, Kirsch J (2006) Nerve growth factor secretion in cultured enteric glia cells is modulated by proinflammatory cytokines. J Neuroendocrinol 18(11):820–825. doi:10.1111/j.1365-2826.2006.01478.x

    Article  Google Scholar 

  16. von Boyen GB, Steinkamp M, Geerling I, Reinshagen M, Schafer KH, Adler G, Kirsch J (2006) Proinflammatory cytokines induce neurotrophic factor expression in enteric glia: a key to the regulation of epithelial apoptosis in Crohn's disease. Inflamm Bowel Dis 12(5):346–354. doi:10.1097/01.mib.0000219350.72483.44

    Article  Google Scholar 

  17. Cirillo C, Sarnelli G, Turco F, Mango A, Grosso M, Aprea G, Masone S, Cuomo R (2011) Proinflammatory stimuli activates human-derived enteroglial cells and induces autocrine nitric oxide production. Neurogastroenterol Motil 23(9):e372–e382. doi:10.1111/j.1365-2982.2011.01748.x

    Article  PubMed  CAS  Google Scholar 

  18. Xiao WD, Chen W, Sun LH, Wang WS, Zhou SW, Yang H (2011) The protective effect of enteric glial cells on intestinal epithelial barrier function is enhanced by inhibiting inducible nitric oxide synthase activity under lipopolysaccharide stimulation. Mol Cell Neurosci 46(2):527–534. doi:10.1016/j.mcn.2010.12.007

    Article  PubMed  CAS  Google Scholar 

  19. Miyashita S, Sagane Y, Inui K, Hayashi S, Miyata K, Suzuki T, Ohyama T, Watanabe T, Niwa K (2013) Botulinum toxin complex increases paracellular permeability in intestinal epithelial cells via activation of p38 mitogen-activated protein kinase. J Vet Med Sci 75(12):1637–1642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. von Boyen GB, Steinkamp M, Reinshagen M, Schafer KH, Adler G, Kirsch J (2004) Proinflammatory cytokines increase glial fibrillary acidic protein expression in enteric glia. Gut 53(2):222–228

    Article  Google Scholar 

  21. von Boyen GB, Schulte N, Pfluger C, Spaniol U, Hartmann C, Steinkamp M (2011) Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol 11:3. doi:10.1186/1471-230x-11-3

    Article  Google Scholar 

  22. Steinkamp M, Gundel H, Schulte N, Spaniol U, Pflueger C, Zizer E, von Boyen GB (2012) GDNF protects enteric glia from apoptosis: evidence for an autocrine loop. BMC Gastroenterol 12:6. doi:10.1186/1471-230x-12-6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Lenaerts K, Ceulemans LJ, Hundscheid IH, Grootjans J, Dejong CH, Olde Damink SW (2013) New insights in intestinal ischemia–reperfusion injury: implications for intestinal transplantation. Curr Opin Organ Transplant 18(3):298–303. doi:10.1097/MOT.0b013e32835ef1eb

    Article  PubMed  Google Scholar 

  24. Mallick IH, Yang W, Winslet MC, Seifalian AM (2004) Ischemia–reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 49(9):1359–1377

    Article  PubMed  CAS  Google Scholar 

  25. Thacker M, Rivera LR, Cho HJ, Furness JB (2011) The relationship between glial distortion and neuronal changes following intestinal ischemia and reperfusion. Neurogastroenterol Motil 23(11):e500–e509. doi:10.1111/j.1365-2982.2011.01696.x

    Article  PubMed  CAS  Google Scholar 

  26. Jiang S, Khan MI, Lu Y, Werstiuk ES, Rathbone MP (2005) Acceleration of blood–brain barrier formation after transplantation of enteric glia into spinal cords of rats. Exp Brain Res 162(1):56–62. doi:10.1007/s00221-004-2119-3

    Article  PubMed  Google Scholar 

  27. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53. doi:10.1038/nrn1824

    Article  PubMed  CAS  Google Scholar 

  28. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23(2):137–149

    Article  PubMed  Google Scholar 

  29. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. doi:10.1016/j.it.2007.01.005

    Article  PubMed  CAS  Google Scholar 

  30. Messing A, Brenner M (2003) GFAP: functional implications gleaned from studies of genetically engineered mice. Glia 43(1):87–90. doi:10.1002/glia.10219

    Article  PubMed  Google Scholar 

  31. Nawashiro H, Brenner M, Fukui S, Shima K, Hallenbeck JM (2000) High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab 20(7):1040–1044. doi:10.1097/00004647-200007000-00003

    Article  PubMed  CAS  Google Scholar 

  32. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP—thirty-one years (1969-2000). Neurochem Res 25(9–10):1439–1451

    Article  PubMed  CAS  Google Scholar 

  33. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7(4):494–506. doi:10.1016/j.nurt.2010.07.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Ruhl A, Nasser Y, Sharkey KA (2004) Enteric glia. Neurogastroenterol Motil 16(Suppl 1):44–49. doi:10.1111/j.1743-3150.2004.00474.x

    Article  PubMed  Google Scholar 

  35. Neunlist M, Aubert P, Bonnaud S, Van Landeghem L, Coron E, Wedel T, Naveilhan P, Ruhl A, Lardeux B, Savidge T, Paris F, Galmiche JP (2007) Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 292(1):G231–G241. doi:10.1152/ajpgi.00276.2005

    Article  PubMed  CAS  Google Scholar 

  36. Bach-Ngohou K, Mahe MM, Aubert P, Abdo H, Boni S, Bourreille A, Denis MG, Lardeux B, Neunlist M, Masson D (2010) Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12,14-prostaglandin J2. J Physiol 588(Pt 14):2533–2544. doi:10.1113/jphysiol.2010.188409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Van Landeghem L, Chevalier J, Mahe MM, Wedel T, Urvil P, Derkinderen P, Savidge T, Neunlist M (2011) Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am J Physiol Gastrointest Liver Physiol 300(6):G976–G987. doi:10.1152/ajpgi.00427.2010

    Article  PubMed  PubMed Central  Google Scholar 

  38. Van Landeghem L, Mahe MM, Teusan R, Leger J, Guisle I, Houlgatte R, Neunlist M (2009) Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions. BMC Genomics 10:507. doi:10.1186/1471-2164-10-507

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nishikiori N, Osanai M, Chiba H, Kojima T, Mitamura Y, Ohguro H, Sawada N (2007) Glial cell-derived cytokines attenuate the breakdown of vascular integrity in diabetic retinopathy. Diabetes 56(5):1333–1340. doi:10.2337/db06-1431

    Article  PubMed  CAS  Google Scholar 

  40. Kamimura Y, Chiba H, Utsumi H, Gotoh T, Tobioka H, Sawada N (2002) Barrier function of microvessels and roles of glial cell line-derived neurotrophic factor in the rat testis. Med Electron Microsc 35(3):139–145. doi:10.1007/s007950200017

    Article  PubMed  CAS  Google Scholar 

  41. Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, Furuuchi K, Kokai Y, Nakagawa T, Mori M, Sawada N (1999) Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun 261(1):108–112. doi:10.1006/bbrc.1999.0992

    Article  PubMed  CAS  Google Scholar 

  42. Miyazaki H, Nagashima K, Okuma Y, Nomura Y (2001) Expression of glial cell line-derived neurotrophic factor induced by transient forebrain ischemia in rats. Brain Res 922(2):165–172

    Article  PubMed  CAS  Google Scholar 

  43. Jin G, Inoue M, Hayashi T, Deguchi K, Nagotani S, Zhang H, Wang X, Shoji M, Hasegawa M, Abe K (2008) Sendai virus-mediated gene transfer of GDNF reduces AIF translocation and ameliorates ischemic cerebral injury. Neurol Res 30(7):731–739. doi:10.1179/174313208x305418

    Article  PubMed  CAS  Google Scholar 

  44. Kannan KB, Colorado I, Reino D, Palange D, Lu Q, Qin X, Abungu B, Watkins A, Caputo FJ, Xu DZ, Semenza GL, Deitch EA, Feinman R (2011) Hypoxia-inducible factor plays a gut-injurious role in intestinal ischemia reperfusion injury. Am J Physiol Gastrointest Liver Physiol 300(5):G853–G861. doi:10.1152/ajpgi.00459.2010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Suzuki Y, Deitch EA, Mishima S, Lu Q, Xu D (2000) Inducible nitric oxide synthase gene knockout mice have increased resistance to gut injury and bacterial translocation after an intestinal ischemia–reperfusion injury. Crit Care Med 28(11):3692–3696

    Article  PubMed  CAS  Google Scholar 

  46. Olson N, Greul AK, Hristova M, Bove PF, Kasahara DI, van der Vliet A (2009) Nitric oxide and airway epithelial barrier function: regulation of tight junction proteins and epithelial permeability. Arch Biochem Biophys 484(2):205–213. doi:10.1016/j.abb.2008.11.027

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, Hurst R, Sofroniew MV (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132(4):1344–1358. doi:10.1053/j.gastro.2007.01.051

    Article  PubMed  CAS  Google Scholar 

  48. Flamant M, Aubert P, Rolli-Derkinderen M, Bourreille A, Neunlist MR, Mahe MM, Meurette G, Marteyn B, Savidge T, Galmiche JP, Sansonetti PJ, Neunlist M (2011) Enteric glia protect against Shigella flexneri invasion in intestinal epithelial cells: a role for S-nitrosoglutathione. Gut 60(4):473–484. doi:10.1136/gut.2010.229237

    Article  PubMed  CAS  Google Scholar 

  49. Cheadle GA, Costantini TW, Lopez N, Bansal V, Eliceiri BP, Coimbra R (2013) Enteric glia cells attenuate cytomix-induced intestinal epithelial barrier breakdown. PLoS One 8(7):e69042. doi:10.1371/journal.pone.0069042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Kolios G, Valatas V, Ward SG (2004) Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 113(4):427–437. doi:10.1111/j.1365-2567.2004.01984.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Guihot G, Guimbaud R, Bertrand V, Narcy-Lambare B, Couturier D, Duee PH, Chaussade S, Blachier F (2000) Inducible nitric oxide synthase activity in colon biopsies from inflammatory areas: correlation with inflammation intensity in patients with ulcerative colitis but not with Crohn's disease. Amino Acids 18(3):229–237

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (NSFC-81270451).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaojun Zhang or Hua Yang.

Additional information

Weidong Xiao and Wensheng Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Wang, W., Chen, W. et al. GDNF is Involved in the Barrier-Inducing Effect of Enteric Glial Cells on Intestinal Epithelial Cells Under Acute Ischemia Reperfusion Stimulation. Mol Neurobiol 50, 274–289 (2014). https://doi.org/10.1007/s12035-014-8730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8730-9

Keywords

Navigation