Skip to main content
Log in

nNOS Translocates into the Nucleus and Interacts with Sox2 to Protect Neurons Against Early Excitotoxicity via Promotion of Shh Transcription

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebral ischemic stroke is a major public health problem leading to high mortality rates and disability in adults. The NMDA receptor (NMDAR)/neuronal nitric oxide synthase (nNOS)/NO-dependent excitotoxicity has been recognized to play an important role in cerebral ischemic stroke pathogenesis. Accumulating evidence suggests that the biological function of nNOS is associated with its ability to couple proteins and its subcellular localization. Previously, we and others determined that nNOS could translocate into the nucleus in cultured astrocytes, but the underlying mechanisms and biological significance remained unclear. In the present study, we identified a specific interaction between nNOS and Sox2 (SRY (sex determining region Y)-box 2), a member of the Sox family of transcription factors, both in vivo and in vitro. Our studies showed that nNOS is transported into the nucleus and interacted with Sox2 to form a nNOS-Sox2 complex in neurons at the early stage following glutamate stimulation. Mechanistically, via activating the transcription of Shh (Sonic hedgehog), the downstream target of Sox2, this nNOS-Sox2 complex exerted a neuroprotective function against glutamate-induced excitotoxicity. Utilizing the MCAO focal ischemia model on rats, we further verified that the ‘nNOS-Sox2-Shh’ axis was involved in the ischemic neuronal injury. Taken together, our studies revealed that the ‘nNOS-Sox2-Shh’ axis functions as a novel feedback compensatory mechanism to protect neurons against the early excitotoxicity and ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J (2014) The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci 8:461. doi:10.3389/fncel.2014.00461

    PubMed  Google Scholar 

  2. Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55(3):289–309. doi:10.1016/j.neuropharm.2008.05.023

    Article  CAS  PubMed  Google Scholar 

  3. Kumar VS, Gopalakrishnan A, Naziroglu M, Rajanikant GK (2014) Calcium ion—the key player in cerebral ischemia. Curr Med Chem 21(18):2065–2075

    Article  PubMed  Google Scholar 

  4. Courtney MJ, Li LL, Lai YY (2014) Mechanisms of NOS1AP action on NMDA receptor-nNOS signaling. Front Cell Neurosci 8:252. doi:10.3389/fncel.2014.00252

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mukherjee P, Cinelli MA, Kang S, Silverman RB (2014) Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 43(19):6814–6838. doi:10.1039/c3cs60467e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20(4):223–230. doi:10.1016/j.niox.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  7. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, Lu W, Ji X et al (2010) Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 16(12):1439–1443. doi:10.1038/nm.2245

    Article  CAS  PubMed  Google Scholar 

  8. Luo CX, Lin YH, Qian XD, Tang Y, Zhou HH, Jin X, Ni HY, Zhang FY et al (2014) Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke. J Neurosci 34(40):13535–13548. doi:10.1523/JNEUROSCI.1305-14.2014

    Article  PubMed  Google Scholar 

  9. Luo CX, Zhu DY (2011) Research progress on neurobiology of neuronal nitric oxide synthase. Neurosci Bull 27(1):23–35. doi:10.1007/s12264-011-1038-0

    Article  CAS  PubMed  Google Scholar 

  10. Yuan Z, Liu B, Yuan L, Zhang Y, Dong X, Lu J (2004) Evidence of nuclear localization of neuronal nitric oxide synthase in cultured astrocytes of rats. Life Sci 74(26):3199–3209. doi:10.1016/j.lfs.2003.10.037

    Article  CAS  PubMed  Google Scholar 

  11. Jiang J, Yan M, Lv Q, Cheng C, Li X, Guo Z, Tao T, Shen A (2010) Inhibition of nitric oxide-induced nuclear localization of CAPON by NMDA receptor antagonist in cultured rat primary astrocytes. Neurochem Int 56(4):561–568. doi:10.1016/j.neuint.2009.12.019

    Article  CAS  PubMed  Google Scholar 

  12. Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12(1):15–30. doi:10.1016/j.stem.2012.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shimozaki K (2014) Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells. World J Stem Cells 6(4):485–490. doi:10.4252/wjsc.v6.i4.485

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feng R, Wen J (2015) Overview of the roles of Sox2 in stem cell and development. Biological chemistry. doi:10.1515/hsz-2014-0317

  15. Sarlak G, Vincent B (2015) The roles of the stem cell-controlling Sox2 transcription factor: from neuroectoderm development to Alzheimer's Disease? Mol Neurobiol. doi:10.1007/s12035-015-9123-4

    PubMed  Google Scholar 

  16. Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V et al (2009) Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 12(10):1248–1256. doi:10.1038/nn.2397

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez-Buylla A, Ihrie RA (2014) Sonic hedgehog signaling in the postnatal brain. Semin Cell Dev Biol 33:105–111. doi:10.1016/j.semcdb.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  18. Rajendran R, Jha S, Fernandes KA, Banerjee SB, Mohammad F, Dias BG, Vaidya VA (2009) Monoaminergic regulation of Sonic hedgehog signaling cascade expression in the adult rat hippocampus. Neurosci Lett 453(3):190–194. doi:10.1016/j.neulet.2009.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M (1999) Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci 11(9):3199–3214

    Article  CAS  PubMed  Google Scholar 

  20. Dai RL, Zhu SY, Xia YP, Mao L, Mei YW, Yao YF, Xue YM, Hu B (2011) Sonic hedgehog protects cortical neurons against oxidative stress. Neurochem Res 36(1):67–75. doi:10.1007/s11064-010-0264-6

    Article  CAS  PubMed  Google Scholar 

  21. Shao B, Jiang J, Wu Q, Xu Y, Lv Q, Li X, Wang P, Shen A et al (2011) The nuclear localization of CAPON in hippocampus and cerebral cortex neurons after lipopolysaccharide stimulation. Neuroimmunomodulation 18(2):89–97. doi:10.1159/000320419

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Wang Y, Chen Y, Li X, Yang J, Liu Y, Shen A (2015) Spy1 mediates phosphorylation and degradation of SCG10 in axonal degeneration. J Biol Chem. doi:10.1074/jbc.M114.611574

  23. Tao T, Cheng C, Ji Y, Xu G, Zhang J, Zhang L, Shen A (2012) Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-kappaB activation. Mol Biol Cell 23(14):2635–2644. doi:10.1091/mbc.E11-09-0805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin Y, Raviv N, Barnett A, Bambakidis NC, Filichia E, Luo Y (2015) The shh signaling pathway is upregulated in multiple cell types in cortical ischemia and influences the outcome of stroke in an animal model. PLoS One 10(4), e0124657. doi:10.1371/journal.pone.0124657

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saitoh F, Tian QB, Okano A, Sakagami H, Kondo H, Suzuki T (2004) NIDD, a novel DHHC-containing protein, targets neuronal nitric-oxide synthase (nNOS) to the synaptic membrane through a PDZ-dependent interaction and regulates nNOS activity. J Biol Chem 279(28):29461–29468. doi:10.1074/jbc.M401471200

    Article  CAS  PubMed  Google Scholar 

  26. Weina K, Utikal J (2014) SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med 3:19. doi:10.1186/2001-1326-3-19

    Article  PubMed  PubMed Central  Google Scholar 

  27. Baltus GA, Kowalski MP, Zhai H, Tutter AV, Quinn D, Wall D, Kadam S (2009) Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 27(9):2175–2184. doi:10.1002/stem.168

    Article  CAS  PubMed  Google Scholar 

  28. Jeong CH, Cho YY, Kim MO, Kim SH, Cho EJ, Lee SY, Jeon YJ, Lee KY et al (2010) Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells 28(12):2141–2150. doi:10.1002/stem.540

    Article  CAS  PubMed  Google Scholar 

  29. Soppa U, Schumacher J, Florencio Ortiz V, Pasqualon T, Tejedor FJ, Becker W (2014) The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation. Cell Cycle 13(13):2084–2100. doi:10.4161/cc.29104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamamizu K, Schlessinger D, Ko MS (2014) SOX9 accelerates ESC differentiation to three germ layer lineages by repressing SOX2 expression through P21 (WAF1/CIP1). Development 141(22):4254–4266. doi:10.1242/dev.115436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chai YS, Hu J, Lei F, Wang YG, Yuan ZY, Lu X, Wang XP, Du F et al (2013) Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correlations with p53/cyclin D1 and PI3K/Akt. Eur J Pharmacol 708(1–3):44–55. doi:10.1016/j.ejphar.2013.02.041

    Article  CAS  PubMed  Google Scholar 

  32. Herreros-Villanueva M, Zhang JS, Koenig A, Abel EV, Smyrk TC, Bamlet WR, de Narvajas AA, Gomez TS, Simeone DM, Bujanda L, Billadeau DD (2013) SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis 2:e61. doi:10.1038/oncsis.2013.23

  33. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, Liu Y, Lv D et al (2011) SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol 3(4):230–238. doi:10.1093/jmcb/mjr002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program, 2012CB822104, 2011CB910604); the National Nature Science Foundation of China (31440037, 31270802, 81471256, 81272789, 31500647); the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (15KJA310003); the Natural Science Foundation of Jiangsu Province (BK20150408); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Shen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Dongmei Zhang and Hongmei Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Wang, H., Liu, H. et al. nNOS Translocates into the Nucleus and Interacts with Sox2 to Protect Neurons Against Early Excitotoxicity via Promotion of Shh Transcription. Mol Neurobiol 53, 6444–6458 (2016). https://doi.org/10.1007/s12035-015-9545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9545-z

Keywords

Navigation