Skip to main content
Log in

KU0063794, a Dual mTORC1 and mTORC2 Inhibitor, Reduces Neural Tissue Damage and Locomotor Impairment After Spinal Cord Injury in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autophagy is an intracellular catabolic mechanism for the degradation of cytoplasmic constituents in the autophagosomal–lysosomal pathway. This mechanism plays an important role in homeostasis and it is defective in certain diseases. Preceding studies have revealed that autophagy is developing as an important moderator of pathological responses associated to spinal cord injury (SCI) and plays a crucial role in secondary injury initiating a progressive degeneration of the spinal cord. Thus, based on this evidence in this study, we used two different selective inhibitors of mTOR activity to explore the functional role of autophagy in an in vivo model of SCI as well as to determine whether the autophagic process is involved in spinal cord tissue damage. We treated animals with a novel synthetic inhibitor temsirolimus and with a dual mTORC1 and mTORC2 inhibitor KU0063794 matched all with the well-known inhibitor of mTOR the rapamycin. Our results demonstrated that mTOR inhibitors could regulate the neuroinflammation associated to SCI and the results that we obtained evidently demonstrated that rapamycin and temsirolimus significantly diminished the expression of iNOS, COX2, GFAP, and re-established nNOS levels, but the administration of KU0063794 is able to blunt the neuroinflammation better than rapamycin and temsirolimus. In addition, neuronal loss and cell mortality in the spinal cord after injury were considerably reduced in the KU0063794-treated mice. Accordingly, taken together our results denote that the administration of KU0063794 produced a neuroprotective function at the lesion site following SCI, representing a novel therapeutic approach after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blesch A, Tuszynski MH (2009) Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 32(1):41–47. doi:10.1016/j.tins.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  2. Wang W, Guo Z, Xu Z, Meng Q, Chen C, Zhang Y, Cao X (2015) Effect of pollen typhae on inhibiting autophagy in spinal cord injury of rats and its mechanisms. Int J Clin Exp Pathol 8(3):2375–2383

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. doi:10.1016/j.cell.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  4. Betz C, Hall MN (2013) Where is mTOR and what is it doing there? J Cell Biol 203(4):563–574. doi:10.1083/jcb.201306041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Menon S, Manning BD (2008) Common corruption of the mTOR signaling network in human tumors. Oncogene 27(Suppl 2):S43–51. doi:10.1038/onc.2009.352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071–14077. doi:10.1074/jbc.R109.094003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sparks CA, Guertin DA (2010) Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29(26):3733–3744. doi:10.1038/onc.2010.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, Sun J, Monahan-Earley RA et al (2006) Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10(2):159–170. doi:10.1016/j.ccr.2006.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168. doi:10.1016/j.molcel.2006.03.029

    Article  CAS  PubMed  Google Scholar 

  10. Duran I, Siu LL, Oza AM, Chung TB, Sturgeon J, Townsley CA, Pond GR, Seymour L et al (2006) Characterisation of the lung toxicity of the cell cycle inhibitor temsirolimus. Eur J Cancer 42(12):1875–1880. doi:10.1016/j.ejca.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 421(1):29–42. doi:10.1042/BJ20090489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Berel D, Wang Y, Li P, Bhowmick NA, Figlin RA, Kim HL (2013) A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. PLoS One 8(1):e54918. doi:10.1371/journal.pone.0054918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Syed F, Sanganee HJ, Singh S, Bahl A, Bayat A (2013) Potent dual inhibitors of TORC1 and TORC2 complexes (KU-0063794 and KU-0068650) demonstrate in vitro and ex vivo anti-keloid scar activity. J Invest Dermatol 133(5):1340–1350. doi:10.1038/jid.2012.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Tateda S, Yahata K, Itoi E (2012) The role of mTOR signaling pathway in spinal cord injury. Cell Cycle 11(17):3175–3179. doi:10.4161/cc.21262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen HC, Fong TH, Hsu PW, Chiu WT (2013) Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion, anti-inflammation, and neuroprotection. J Surg Res 179(1):e203–210. doi:10.1016/j.jss.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  16. Lang-Lazdunski L, Blondeau N, Jarretou G, Lazdunski M, Heurteaux C (2003) Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. J Vasc Surg 38(3):564–575

    Article  PubMed  Google Scholar 

  17. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23(5):635–659. doi:10.1089/neu.2006.23.635

    Article  PubMed  Google Scholar 

  18. Shea TB (1994) Technical report. An inexpensive densitometric analysis system using a Macintosh computer and a desktop scanner. Biotechniques 16(6):1126–1128

    CAS  PubMed  Google Scholar 

  19. Bethea JR, Castro M, Keane RW, Lee TT, Dietrich WD, Yezierski RP (1998) Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci 18(9):3251–3260

    CAS  PubMed  Google Scholar 

  20. Esposito E, Paterniti I, Meli R, Bramanti P, Cuzzocrea S (2012) GW0742, a high-affinity PPAR-delta agonist, mediates protection in an organotypic model of spinal cord damage. Spine (Phila Pa 1976) 37(2):E73–78. doi:10.1097/BRS.0b013e3182276d88

    Article  Google Scholar 

  21. Abe K, Matsuki N (2000) Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci Res 38(4):325–329

    Article  CAS  PubMed  Google Scholar 

  22. Paterniti I, Impellizzeri D, Crupi R, Morabito R, Campolo M, Esposito E, Cuzzocrea S (2013) Molecular evidence for the involvement of PPAR-delta and PPAR-gamma in anti-inflammatory and neuroprotective activities of palmitoylethanolamide after spinal cord trauma. J Neuroinflammation 10:20. doi:10.1186/1742-2094-10-20

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293. doi:10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saitoh T, Akira S (2010) Regulation of innate immune responses by autophagy-related proteins. J Cell Biol 189(6):925–935. doi:10.1083/jcb.201002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lapaquette P, Guzzo J, Bretillon L, Bringer MA (2015) Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm 2015:398483. doi:10.1155/2015/398483

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu J, Kim GM, Chen S, Yan P, Ahmed SH, Ku G, Beckman JS, Xu XM et al (2001) iNOS and nitrotyrosine expression after spinal cord injury. J Neurotrauma 18(5):523–532. doi:10.1089/089771501300227323

    Article  CAS  PubMed  Google Scholar 

  27. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21(17):6480–6491

    CAS  PubMed  Google Scholar 

  28. Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41(7):369–378. doi:10.1038/sj.sc.3101483

    Article  CAS  PubMed  Google Scholar 

  29. Esposito E, Cuzzocrea S (2011) Anti-TNF therapy in the injured spinal cord. Trends Pharmacol Sci 32(2):107–115. doi:10.1016/j.tips.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  30. Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, Perez-Pol R (2001) IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma 18(9):947–956. doi:10.1089/089771501750451857

    Article  CAS  PubMed  Google Scholar 

  31. Dong H, Fazzaro A, Xiang C, Korsmeyer SJ, Jacquin MF, McDonald JW (2003) Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration. J Neurosci 23(25):8682–8691

    CAS  PubMed  Google Scholar 

  32. Ackery A, Robins S, Fehlings MG (2006) Inhibition of Fas-mediated apoptosis through administration of soluble Fas receptor improves functional outcome and reduces posttraumatic axonal degeneration after acute spinal cord injury. J Neurotrauma 23(5):604–616. doi:10.1089/neu.2006.23.604

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maria Antonietta Medici for her excellent technical assistance during this study and Mr Francesco Soraci for his secretarial and administrative assistance and Miss Valentina Malvagni for her editorial assistance with the manuscript.

This work was supported by L’Oréal award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cuzzocrea.

Ethics declarations

The study was permitted by the University of Messina Review Board for the care of animals. All animal experiments complied with regulations in Italy (D.M. 116192) as well as the EU regulations (O.J. of E.C. L 358/1 12/18/1986).

Competing Interests

The authors declare that they have no competing interests.

Additional information

Marika Cordaro and Irene Paterniti contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordaro, M., Paterniti, I., Siracusa, R. et al. KU0063794, a Dual mTORC1 and mTORC2 Inhibitor, Reduces Neural Tissue Damage and Locomotor Impairment After Spinal Cord Injury in Mice. Mol Neurobiol 54, 2415–2427 (2017). https://doi.org/10.1007/s12035-016-9827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9827-0

Keywords

Navigation