Skip to main content

Advertisement

Log in

Lowered Antioxidant Defenses and Increased Oxidative Toxicity Are Hallmarks of Deficit Schizophrenia: a Nomothetic Network Psychiatry Approach

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is now evidence that schizophrenia and deficit schizophrenia are neuro-immune conditions and that oxidative stress toxicity (OSTOX) may play a pathophysiological role. Aims of the study: to compare OSTOX biomarkers and antioxidant (ANTIOX) defenses in deficit versus non-deficit schizophrenia. We examined lipid hydroperoxides (LOOH), malondialdehyde (MDA), advanced oxidation protein products (AOPP), sulfhydryl (–SH) groups, paraoxonase 1 (PON1) activity and PON1 Q192R genotypes, and total radical-trapping antioxidant parameter (TRAP) as well as immune biomarkers in patients with deficit (n = 40) and non-deficit (n = 40) schizophrenia and healthy controls (n = 40). Deficit schizophrenia is characterized by significantly increased levels of AOPP and lowered –SH, and PON1 activity, while no changes in the OSTOX/ANTIOX biomarkers were found in non-deficit schizophrenia. An increased OSTOX/ANTIOX ratio was significantly associated with deficit versus non-deficit schizophrenia (odds ratio = 3.15, p < 0.001). Partial least squares analysis showed that 47.6% of the variance in a latent vector extracted from psychosis, excitation, hostility, mannerism, negative symptoms, psychomotor retardation, formal thought disorders, and neurocognitive test scores was explained by LOOH+AOPP, PON1 genotype + activity, CCL11, tumor necrosis factor (TNF)-α, and IgA responses to neurotoxic tryptophan catabolites (TRYCATs), whereas –SH groups and IgM responses to MDA showed indirect effects mediated by OSTOX and neuro-immune biomarkers. When overall severity of schizophrenia increases, multiple immune and oxidative (especially protein oxidation indicating chlorinative stress) neurotoxicities and impairments in immune-protective resilience become more prominent and shape a distinct nosological entity, namely deficit schizophrenia. The nomothetic network psychiatry approach allows building causal-pathway-phenotype models using machine learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Th:

T helper

TRYCATs:

Tryptophan catabolites

IRS:

Immune-inflammatory response system

CIRS:

Compensatory immune regulatory system

IL:

Interleukin

sIL-1RA:

Soluble IL-1 receptor antagonist

TNF:

Tumor necrosis factor

PHEMN:

Psychosis, hostility, excitation, mannerism, negative symptoms

PA:

Picolinic acid

XA:

Xanthurenic acid

OSE:

Oxidative-specific epitopes

MDA:

Malondialdehyde

PON:

Paraoxonase

O&NS:

Oxidative and nitrosative stress

LOOH:

Lipid hydroperoxides

NOx:

Nitric oxide metabolites

TRAP:

Radical-trapping antioxidant parameter

AOPP:

Advanced oxidation protein products

–SH:

Thiol groups

SDS:

Schedule for Deficit Schizophrenia

PANSS:

Positive and Negative Syndrome Scale

SANS:

Scale for the Assessment of Negative Symptoms

PMR:

Psychomotor retardation

FTD:

Formal thought disorders

CERAD:

Consortium to Establish a Registry for Alzheimer’s Disease

CANTAB:

Cambridge Neuropsychological Test Automated Battery

WLM:

World List Memory test

VFT:

Verbal Fluency Test

MMSE:

Mini-Mental State Examination

SWM:

Spatial working memory

TUD:

Tobacco use disorder

BMI:

Body mass index

CMPA:

4-(Chloromethyl)phenyl acetate

AREase:

Arylesterase

3OSTOX:

Oxidative stress toxicity index

3ANTIOX:

Antioxidant index

3OHK:

3-OH-kynurenine

AA:

Anthranilic acid

KA:

Kynurenic acid

NOX/PRO:

Noxious/protective ratio

4PRORESIL:

Index of protective resilience against neuro-immune, neuro-oxidative, and bacterial stressors

8MITOTOX:

Index of multiple immune and oxidative toxicities

GLM:

Generalized linear model

FDR:

False discovery rate

PLS:

Partial least squares

AVE:

Average extracted variance

LV:

Latent vector

OSOS:

Overall severity of schizophrenia

CTD:

Confirmatory tetrad analysis

NNP:

Nomothetic network psychiatry

References

  1. Smith RS, Maes M (1995) The macrophage-T-lymphocyte theory of schizophrenia: additional evidence. Med Hypotheses 45(2):135–141

    CAS  PubMed  Google Scholar 

  2. Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W, Scharpé S (1997) Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res 66(1):1–11

    CAS  PubMed  Google Scholar 

  3. Roomruangwong C, Noto C, Kanchanatawan B, Anderson G, Kubera M, Carvalho AF, Maes M (2020) The role of aberrations in the immune-inflammatory response system (IRS) and the compensatory immune-regulatory reflex system (CIRS) in different phenotypes of schizophrenia: the IRS-CIRS theory of schizophrenia. Mol Neurobiol 57(2):778–797

    CAS  PubMed  Google Scholar 

  4. Maes M, Vojdani A, Geffard M, Moreira EG, Barbosa DS, Michelin AP, Semeão LO, Sirivichayakul S et al (2019) Schizophrenia phenomenology comprises a bifactorial general severity and a single-group factor, which are differently associated with neurotoxic immune and immune-regulatory pathways. Biomol Concepts 10(1):209–225

    CAS  PubMed  Google Scholar 

  5. Maes M, Sirivichayakul S, Kanchanatawan B, Carvalho AF (2020) In schizophrenia, psychomotor retardation is associated with executive and memory impairments, negative and psychotic symptoms, neurotoxic immune products and lower natural IgM to malondialdehyde. World J Biol Psychiatry 7:1–19

    Google Scholar 

  6. Al-Hakeim HK, Almulla AF, Maes M (2020) The neuroimmune and neurotoxic fingerprint of major neurocognitive psychosis or deficit schizophrenia: a supervised machine learning study. Neurotox Res 37(3):753–771

    PubMed  Google Scholar 

  7. Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Ormstad H, Anderson G, Maes M (2018) Deficit, but not nondeficit, schizophrenia is characterized by mucosa-associated activation of the tryptophan catabolite (TRYCAT) pathway with highly specific increases in IgA responses directed to picolinic, xanthurenic, and quinolinic acid. Mol Neurobiol 55(2):1524–1536

    CAS  PubMed  Google Scholar 

  8. Kanchanatawan B, Sriswasdi S, Thika S, Stoyanov D, Sirivichayakul S, Carvalho AF, Geffard M, Maes M (2018) Towards a new classification of stable phase schizophrenia into major and simple neuro-cognitive psychosis: results of unsupervised machine learning analysis. J Eval Clin Pract 24(4):879–891

    PubMed  Google Scholar 

  9. Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M (2019) Eotaxin, an endogenous cognitive deteriorating chemokine (ECDC), is a major contributor to cognitive decline in normal people and to executive, memory, and sustained attention deficits, formal thought disorders, and psychopathology in schizophrenia patients. Neurotox Res 35(1):122–138

    CAS  PubMed  Google Scholar 

  10. Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF (2019) In schizophrenia, deficits in natural IgM isotype antibodies including those directed to malondialdehyde and azelaic acid strongly predict negative symptoms, neurocognitive impairments, and the deficit syndrome. Mol Neurobiol 56(7):5122–5135

    CAS  PubMed  Google Scholar 

  11. Maes M, Sirivichayakul S, Matsumoto AK, Maes A, Michelin AP, de Oliveira SL, de Lima Pedrão JV, Moreira EG et al (2020) Increased levels of plasma tumor necrosis factor-α mediate schizophrenia symptom dimensions and neurocognitive impairments and are inversely associated with natural IgM directed to malondialdehyde and paraoxonase 1 activity. Mol Neurobiol 57(5):2333–2345

    CAS  PubMed  Google Scholar 

  12. Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A (2019) Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox Res 36(2):306–322

    CAS  PubMed  Google Scholar 

  13. Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF (2019) In schizophrenia, increased plasma IgM/IgA responses to gut commensal bacteria are associated with negative symptoms, neurocognitive impairments, and the deficit phenotype. Neurotox Res 35(3):684–698

    CAS  PubMed  Google Scholar 

  14. Morris G, Puri BK, Olive L, Carvalho AF, Berk M, Maes M (2019) Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 48:104408

    Google Scholar 

  15. Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Anderson G, Maes M (2018) Deficit schizophrenia is characterized by defects in IgM-mediated responses to tryptophan catabolites (TRYCATs): a paradigm shift towards defects in natural self-regulatory immune responses coupled with mucosa-derived TRYCAT pathway activation. Mol Neurobiol 55(3):2214–2226

    CAS  PubMed  Google Scholar 

  16. Matsumoto AK, Maes M, Supasitthumrong T, Maes A, Michelin AP, de Oliveira SL, de Lima Pedrão JV, Moreira EG et al (2020) Deficit schizophrenia and its features are associated with PON1 Q192R genotypes and lowered paraoxonase 1 (PON1) enzymatic activity: effects on bacterial translocation. CNS Spectrums in press

  17. Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O'Neil A, Hayley AC, Pasco JA et al (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62

    CAS  PubMed  Google Scholar 

  18. Noto C, Ota VK, Gadelha A, Noto MN, Barbosa DS, Bonifácio KL, Nunes SO, Cordeiro Q et al (2015) Oxidative stress in drug naïve first episode psychosis and antioxidant effects of risperidone. J Psychiatr Res 68:210–216

    PubMed  Google Scholar 

  19. Sarandol A, Sarandol E, Acikgoz HE, Eker SS, Akkaya C, Dirican M (2015) First-episode psychosis is associated with oxidative stress: effects of short-term antipsychotic treatment. Psychiatry Clin Neurosci 69(11):699–707

    CAS  PubMed  Google Scholar 

  20. García-Bueno B, Bioque M, Mac-Dowell KS, Barcones MF, Martínez-Cengotitabengoa M, Pina-Camacho L, Rodríguez-Jiménez R, Sáiz PA et al (2014) Pro−/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr Bull 40(2):376–387

    PubMed  Google Scholar 

  21. Pedrini M, Massuda R, Fries GR, de Bittencourt Pasquali MA, Schnorr CE, Moreira JC, Teixeira AL, Lobato MI et al (2012) Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res 46(6):819–824

    PubMed  Google Scholar 

  22. Kriisa K, Haring L, Vasar E, Koido K, Janno S, Vasar V, Zilmer K, Zilmer M (2016) Antipsychotic treatment reduces indices of oxidative stress in first-episode psychosis patients. Oxidative Med Cell Longev 2016:9616593

    Google Scholar 

  23. Boll KM, Noto C, Bonifácio KL, Bortolasci CC, Gadelha A, Bressan RA, Barbosa DS, Maes M et al (2017) Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res 253:43–48

    CAS  PubMed  Google Scholar 

  24. Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, Elsalhy M, Kuromiya M et al (2019) Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: a systematic review and meta-analysis. J Psychopharmacol 33(10):1199–1214

    CAS  PubMed  Google Scholar 

  25. Fraguas D, Díaz-Caneja CM, Rodríguez-Quiroga A, Arango C (2017) Oxidative stress and inflammation in early onset first episode psychosis: a systematic review and meta-analysis. Int J Neuropsychopharmacol 20(6):435–444

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fraguas D, Díaz-Caneja CM, Ayora M, Hernández-Álvarez F, Rodríguez-Quiroga A, Recio S, Leza JC, Arango C (2019) Oxidative stress and inflammation in first-episode psychosis: a systematic review and meta-analysis. Schizophr Bull 45(4):742–751

    PubMed  Google Scholar 

  27. Das TK, Javadzadeh A, Dey A, Sabesan P, Théberge J, Radua J, Palaniyappan L (2019) Antioxidant defense in schizophrenia and bipolar disorder: a meta-analysis of MRS studies of anterior cingulate glutathione. Prog Neuro-Psychopharmacol Biol Psychiatry 91:94–102

    CAS  Google Scholar 

  28. Zhang M, Zhao Z, He L, Wan C (2010) A meta-analysis of oxidative stress markers in schizophrenia. Sci China Life Sci 53(1):112–124

    CAS  PubMed  Google Scholar 

  29. Grignon S, Chianetta JM (2007) Assessment of malondialdehyde levels in schizophrenia: a meta-analysis and some methodological considerations. Prog Neuro-Psychopharmacol Biol Psychiatry 31(2):365–369

    CAS  Google Scholar 

  30. Kirkpatrick B, Buchanan RW, McKenney PD, Alphs LD, Carpenter WT Jr (1989) The schedule for the deficit syndrome: an instrument for research in schizophrenia. Psychiatry Res 30:119–123

    CAS  PubMed  Google Scholar 

  31. Kittirathanapaiboon P, Khamwongpin M (2005) The validity of the mini international neuropsychiatric interview (M.I.N.I.) Thai version: Suanprung hospital, Department of Mental Health.

  32. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    CAS  PubMed  Google Scholar 

  33. Andreasen NC (1989) The scale for the assessment of negative symptoms (SANS): conceptual and theoretical foundations. Br J Psychiatry Suppl 7:49–58

    Google Scholar 

  34. Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Google Scholar 

  35. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Almulla AF, Al-Hakeim H, Maes M (2020) Schizophrenia phenomenology revisited: positive and negative symptoms are strongly related reflective manifestations of an underlying single trait indicating overall severity of schizophrenia. CNS Spectrums, in press:1–10

  37. CERAD (1986) CERAD – an overview: the consortium to establish a registry for Alzheimer’s disease; http://cerad.mc.duke.edu/

  38. CANTAB (2018) The most validated cognitive research software.http://www.cambridgecognition.com/cantab/ October 1, 2018

  39. Hanasand M, Omdal R, Norheim KB, Gransson LG, Brede C, Jonsson G (2012) Improved detection of advanced oxidation protein products in plasma. Clin Chim Acta 413:901–906

    CAS  PubMed  Google Scholar 

  40. Gonzalez Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100

    CAS  PubMed  Google Scholar 

  41. Panis C, Herrera ACSA, Victorino VJ, Campos FC, Freitas LF, De Rossi T, Colado Simao AN, Cecchini AL et al (2012) Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat 133:89–97

    CAS  PubMed  Google Scholar 

  42. Navarro-Gonzalvez JA, Garcia-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44:679–681

    CAS  PubMed  Google Scholar 

  43. Repetto M, Reides C, Carretero MLG, Costa M, Griemberg G, Llesuy S (1996) Oxidative stress in blood of HIV infected patients. Clin Chim Acta 255(2):107–117

    CAS  PubMed  Google Scholar 

  44. Hu ML (1994) Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 233:380–385

    CAS  PubMed  Google Scholar 

  45. Taylan E, Resmi H (2010) The analytical performance of a microplatemethod for total sulfhydryl measurement in biological samples. Turkish J Biochem 35:275–278

    CAS  Google Scholar 

  46. Richter RJ, Jarvik GP, Furlong CE (2008) Determination of paraoxonase 1 status without the use of toxic organophosphate substrates. Circ Cardiovasc Genet 1:147–152

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistics Society Series b (Methodological) 57:289–300

    Google Scholar 

  48. Ringle CM, da Silva D, Bido D (2014) Structural equation modeling with the SmartPLS. Brazilian J Market- BJM Revista Brasileira de Marketing – ReMark Edição Especial Vol 13, n. 2.

  49. Albayrak Y, Ünsal C, Beyazyüz M, Ünal A, Kuloğlu M (2013) Reduced total antioxidant level and increased oxidative stress in patients with deficit schizophrenia: a preliminary study. Prog Neuro-Psychopharmacol Biol Psychiatry 45:144–149

    CAS  Google Scholar 

  50. Wu Q, Zhong ZM, Pan Y, Zeng JH, Zheng S, Zhu SY, Chen JT (2015) Advanced oxidation protein products as a novel marker of oxidative stress in postmenopausal osteoporosis. Med Sci Monit 21:2428–2432

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yap YW, Whiteman M, Cheung NS (2007) Chlorinative stress: an under appreciated mediator of neurodegeneration? Cell Signal 19(2):219–228

    CAS  PubMed  Google Scholar 

  52. Casciaro M, Di Salvo E, Pace E, Ventura-Spagnolo E, Navarra M, Gangemi S (2017) Chlorinative stress in age-related diseases: a literature review. Immun Ageing 14:21

    PubMed  PubMed Central  Google Scholar 

  53. Rasool M, Malik A, Butt TT, Ashraf MAB, Rasool R, Zahid A, Waquar S, Asif M et al (2019) Implications of advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs) and other biomarkers in the development of cardiovascular diseases. Saudi J Biol Sci 26(2):334–339

    CAS  PubMed  Google Scholar 

  54. Yu C, Huang D, Wang K, Lin B, Liu Y, Liu S, Wu W, Zhang H (2017) Advanced oxidation protein products induce apoptosis, and upregulate sclerostin and RANKL expression, in osteocytic MLO-Y4 cells via JNK/p38 MAPK activation. Mol Med Rep 15(2):543–550

    CAS  PubMed  Google Scholar 

  55. Estévez M, Luna C (2017) Dietary protein oxidation: a silent threat to human health? Crit Rev Food Sci Nutr 57(17):3781–3793

    PubMed  Google Scholar 

  56. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    CAS  PubMed  Google Scholar 

  57. Ding R, Jiang H, Sun B, Wu X, Li W, Zhu S, Liao C, Zhong Z et al (2016) Advanced oxidation protein products sensitized the transient receptor potential vanilloid 1 via NADPH oxidase 1 and 4 to cause mechanical hyperalgesia. Redox Biol 10:1–11

    PubMed  PubMed Central  Google Scholar 

  58. de Carvalho Jennings Pereira WL, Flauzino T, Alfieri DF, Oliveira SR, Kallaur AP, Simão ANC, Lozovoy MAB, Kaimen-Maciel DR et al (2020) Immune-inflammatory, metabolic and hormonal biomarkers are associated with the clinical forms and disability progression in patients with multiple sclerosis: a follow-up study. J Neurol Sci 410:116630

    PubMed  Google Scholar 

  59. Scavuzzi BM, Simão ANC, Iriyoda TMV, Lozovoy MAB, Stadtlober NP, Franchi Santos LFDR, Flauzino T, de Medeiros FA et al (2018) Increased lipid and protein oxidation and lowered anti-oxidant defenses in systemic lupus erythematosus are associated with severity of illness, autoimmunity, increased adhesion molecules, and Th1 and Th17 immune shift. Immunol Res 66(1):158–171

    CAS  PubMed  Google Scholar 

  60. Medeiros MS, Schumacher-Schuh A, Cardoso AM, Bochi GV, Baldissarelli J, Kegler A, Santana D, Chaves CM et al (2016) Iron and oxidative stress in Parkinson’s disease: an observational study of injury biomarkers. PLoS One 11(1):e0146129

    PubMed  PubMed Central  Google Scholar 

  61. Maes M, Supasitthumrong T, Limotai C, Michelin AP, Matsumoto AK, Semeão LDO, Pedrão JVDL, Moreira EG et al (2020) Increased oxidative stress toxicity and lowered antioxidant defenses in temporal lobe epilepsy and mesial temporal sclerosis: associations with psychiatric comorbidities. Preprints:2020010285. https://doi.org/10.20944/preprints202001.0285.v1

  62. Maes M, Bonifacio KL, Morelli NR, Vargas HO, Moreira EG, St Stoyanov D, Barbosa DS, Carvalho AF et al (2018) Generalized anxiety disorder (GAD) and comorbid major depression with GAD are characterized by enhanced nitro-oxidative stress, increased lipid peroxidation, and lowered lipid-associated antioxidant defenses. Neurotox Res 34(3):489–510

    CAS  PubMed  Google Scholar 

  63. Gomes C, Martinho FC, Barbosa DS, Antunes LS, Póvoa HCC, Baltus THL, Morelli NR, Vargas HO et al (2018) Increased root canal endotoxin levels are associated with chronic apical periodontitis, increased oxidative and nitrosative stress, major depression, severity of depression, and a lowered quality of life. Mol Neurobiol 55(4):2814–2827

    CAS  PubMed  Google Scholar 

  64. Roomruangwong C, Barbosa DS, Matsumoto AK, Nogueira AS, Kanchanatawan B, Sirivichayakul S, Carvalho AF, Duleu S et al (2017) Activated neuro-oxidative and neuro-nitrosative pathways at the end of term are associated with inflammation and physio-somatic and depression symptoms, while predicting outcome characteristics in mother and baby. J Affect Disord 223:49–58

    CAS  PubMed  Google Scholar 

  65. Zhang P, Wang H, Hong Y, Yu M, Zeng R, Long Y, Chen J (2018) Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens Bioelectron 99:318–324

    CAS  PubMed  Google Scholar 

  66. Thomas CJ, Schroder K (2013) Pattern recognition receptor function in neutrophils. Trends Immunol 34(7):317–328

    CAS  PubMed  Google Scholar 

  67. Oxford Biomedical Research (2010) Antioxidants and their measurement. Antioxidant assays: how do they compare, As accessed March 3, 2020 https://www.oxfordbiomed.com/tech-resources/oxidative-stress-best-practices/antioxidants-and-their-measurement

  68. Rahman I, MacNee W (2000) Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med 28(9):1405–1420

    CAS  PubMed  Google Scholar 

  69. Biswas S, Chida AS, Rahman I (2006) Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 71(5):551–564

    CAS  PubMed  Google Scholar 

  70. Wei C, Sun Y, Chen N, Chen S, Xiu M, Zhang X (2020) Interaction of oxidative stress and BDNF on executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology 111:104473

    CAS  PubMed  Google Scholar 

  71. Bai ZL, Li XS, Chen GY, Du Y, Wei ZX, Chen X, Zheng GE, Deng W et al (2018) Serum oxidative stress marker levels in unmedicated and medicated patients with schizophrenia. J Mol Neurosci 66(3):428–436

    CAS  PubMed  Google Scholar 

  72. Moreira EG, Boll KM, Correia DG, Soares JF, Rigobello C, Maes M (2019) Why should psychiatrists and neuroscientists worry about paraoxonase 1? Curr Neuropharmacol 7(11):1004–1020

    Google Scholar 

  73. Gugliucci A, Menini T (2015) Paraoxonase 1 and HDL maturation. Clin Chim Acta 439:5–13

    CAS  PubMed  Google Scholar 

  74. Huang Y, Wu Z, Riwanto M, Gao S, Levison BS, Gu X, Fu X, Wagner MA et al (2013) Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest 123(9):3815–3828

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Efrat M, Aviram M (2010) Paraoxonase 1 interactions with HDL, antioxidants and macrophages regulate atherogenesis - a protective role for HDL phospholipids. Adv Exp Med Biol 660:153–166

    CAS  PubMed  Google Scholar 

  76. Brinholi FF, Noto C, Maes M, Bonifácio KL, Brietzke E, Ota VK, Gadelha A, Cordeiro Q, Belangero SI, Bressan RA, Vargas HO, Higachi L, de FariasCC Moreira EG, Barbosa DS (2015) Lowered paraoxonase 1 (PON1) activity is associated with increased cytokine levels in drug naïve first episode psychosis. Schizophr Res 166(1–3):225–230. https://doi.org/10.1016/j.schres.2015.06.009

    Article  PubMed  Google Scholar 

  77. Meneses MJ, Silvestre R, Sousa-Lima I, Macedo MP (2019) Paraoxonase-1 as a regulator of glucose and lipid homeostasis: Impact on the onset and progression of metabolic disorders. Int J Mol Sci 20(16)

  78. Petras M, Tatarkova Z, Kovalska M, Mokra D, Dobrota D, Lehotsky J, Drgova A (2014) Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol 65:15–23

    CAS  PubMed  Google Scholar 

  79. Orellana G, Alvarado L, Muñoz-Neira C, Ávila R, Méndez MF, Slachevsky A (2013) Psychosis-related matricide associated with a lesion of the ventromedial prefrontal cortex. J Am Acad Psychiatry Law 41(3):401–406

    PubMed  Google Scholar 

  80. Orellana G, Slachevsky A (2013) Executive functioning in schizophrenia. Front Psychiatry 4:1–15

    Google Scholar 

  81. Al-Hakeim HK, Almulla AF, Al-Dujaili AH, Maes M (2020) Construction of a neuro-immune-cognitive pathway-phenotype underpinning the phenome of deficit schizophrenia. Curr Top Med Chem 20(9):747–758

    CAS  PubMed  Google Scholar 

  82. Stoyanov D (2020) The reification of diagnosis in psychiatry. Neurotox Res 37(3):772–774. https://doi.org/10.1007/s12640-019-00139-2

    Article  PubMed  Google Scholar 

  83. RDoC initiative (2020) Research domain criteria (RDoC), https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/index.shtml As assessed 19-7-2020

  84. Stoyanov D, Kandilarova S, Paunova R, Barranco Garcia J, Latypova A, Kherif F (2019) Cross-validation of functional MRI and paranoid-depressive scale: results from multivariate analysis. Front Psychiatry 25:10:869

    Google Scholar 

Download references

Acknowledgements

We are thankful for the contribution of the Postgraduate Laboratory of the University Hospital of Londrina and research support given by Asahi Glass Foundation, Chulalongkorn University Centenary Academic Development Project and Ratchadapiseksompotch Funds, Faculty of Medicine, Chulalongkorn University.

Authorships

BK and MM made the design of the study. BK recruited and screened the participants. MM performed statistical analyses. AKM, APM, LOS, JVLP, EGM, SS, and DSB performed the assays. AFC and MS contributed in a meaningful way to the intellectual content of this paper. All authors agreed upon the final version of the paper.

Funding

The study was supported by the Asahi Glass Foundation, Chulalongkorn University Centenary Academic Development Project and Ratchadapiseksompotch Funds, Faculty of Medicine, Chulalongkorn University, grant numbers RA60/042 (to BK) and RA61/050 (to MM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Maes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

The study was approved by the Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (No 298/57), which is in compliance with the International Guideline for Human Research protection as required by the Declaration of Helsinki, The Belmont Report, CIOMS Guideline, and International Conference on Harmonization on Good Clinical Practice (ICH-GCP).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, M., Sirivichayakul, S., Matsumoto, A.K. et al. Lowered Antioxidant Defenses and Increased Oxidative Toxicity Are Hallmarks of Deficit Schizophrenia: a Nomothetic Network Psychiatry Approach. Mol Neurobiol 57, 4578–4597 (2020). https://doi.org/10.1007/s12035-020-02047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02047-5

Keywords

Navigation