Skip to main content
Log in

1H, 15N, 13C backbone resonance assignment of human Alkbh5

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

N6-methyladenosine (m6A) is the most abundant and reversible post-transcriptional modification in eukaryotic mRNA and long non-coding RNA (lncRNA). The central role of m6A in various physiological processes has generated considerable biological and pharmacological interest. Alkbh5 (AlkB homologue 5) belongs to the AlkB family and is a non-heme Fe(II)/α-ketoglutarate-dependent dioxygenase that selectively catalyzes the oxidative demethylation of m6A. Herein, we report the backbone 1H, 15N, 13C chemical shift assignment of a fully active, 26 kDa construct of human Alkbh5. Experiments were acquired at 25 °C by heteronuclear multidimensional NMR spectroscopy. Collectively, 92% of all backbone resonances were assigned, with 195 out of a possible 212 residues assigned in the 1H–15N TROSY spectrum. Using the program TALOS+, a secondary structure prediction was generated from the assigned backbone resonance that is consistent with the previously reported X-ray structure of the enzyme. The reported assignment will permit investigations of the protein structural dynamics anticipated to provide crucial insight regarding fundamental aspects in the recognition and enzyme regulation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ, McDonough MA (2014) Structure of human RNA N(6)-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res 42:4741–4754. https://doi.org/10.1093/nar/gku085

    Article  Google Scholar 

  • Bokar JA (2005) Thebiosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. In: Grosjean H (ed) Topics in current genetics, vol 12. Springer, Heidelberg, pp 141–177

    Google Scholar 

  • Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF (2011) The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 39:D195–D201. https://doi.org/10.1093/nar/gkq1028

    Article  Google Scholar 

  • Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Bruning JC, Nolan PM, Ashcroft FM, Cox RD (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42:1086–1092. https://doi.org/10.1038/ng.713

    Article  Google Scholar 

  • Clore GM, Gronenborn AM (1998) Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol 16:22–34

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-sEq. Nature 485:201–206. https://doi.org/10.1038/nature11112

    Article  ADS  Google Scholar 

  • Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu W, Tong Y, Cheng C, Chen Z (2014) Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem 289:11571–11583. https://doi.org/10.1074/jbc.M113.546168

    Article  Google Scholar 

  • Harper JE, Miceli SM, Roberts RJ, Manley JL (1990) Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res 18:5735–5741

    Article  Google Scholar 

  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887. https://doi.org/10.1038/nchembio.687

    Article  Google Scholar 

  • Karra E, O’Daly OG, Choudhury AI, Yousseif A, Millership S, Neary MT, Scott WR, Chandarana K, Manning S, Hess ME, Iwakura H, Akamizu T, Millet Q, Gelegen C, Drew ME, Rahman S, Emmanuel JJ, Williams SC, Ruther UU, Bruning JC, Withers DJ, Zelaya FO, Batterham RL (2013) A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest 123:3539–3551. https://doi.org/10.1172/JCI44403

    Article  Google Scholar 

  • Krishnarjuna B, Jaipuria G, Thakur A, D’Silva P, Atreya HS (2011) Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR 49:39–51. https://doi.org/10.1007/s10858-010-9459-z

    Article  Google Scholar 

  • Li Y, Wang X, Li C, Hu S, Yu J, Song S (2014) Transcriptome-wide N(6)-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification. RNA Biol 11:1180–1188. https://doi.org/10.4161/rna.36281

    Article  Google Scholar 

  • Li Q, Huang Y, Liu X, Gan J, Chen H, Yang CG (2016) Rhein Inhibits AlkB repair enzymes and sensitizes cells to methylated DNA damage. J Biol Chem 291:11083–11093. https://doi.org/10.1074/jbc.M115.711895

    Article  Google Scholar 

  • Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95. https://doi.org/10.1038/nchembio.1432

    Article  Google Scholar 

  • Loos RJ, Yeo GS (2014) The bigger picture of FTO: the first GWAS-identified obesity gene. Nat Rev Endocrinol 10:51–61. https://doi.org/10.1038/nrendo.2013.227

    Article  Google Scholar 

  • Luo GZ, MacQueen A, Zheng G, Duan H, Dore LC, Lu Z, Liu J, Chen K, Jia G, Bergelson J, He C (2014) Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun 5:5630. https://doi.org/10.1038/ncomms6630

    Article  Google Scholar 

  • Merkestein M, Laber S, McMurray F, Andrew D, Sachse G, Sanderson J, Li M, Usher S, Sellayah D, Ashcroft FM, Cox RD (2015) FTO influences adipogenesis by regulating mitotic clonal expansion. Nat Commun 6:6792. https://doi.org/10.1038/ncomms7792

    Article  ADS  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  Google Scholar 

  • Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR (2015) 5′ UTR m(6)A promotes cap-independent translation. Cell 163:999–1010. https://doi.org/10.1016/j.cell.2015.10.012

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Rendtlew Danielsen JM, Liu F, Yang YG (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189. https://doi.org/10.1038/cr.2014.3

    Article  Google Scholar 

  • Saneyoshi M, Harada F, Nishimura S (1969) Isolation and characterization of N6-methyladenosine from Escherichia coli valine transfer RNA. Biochim Biophys Acta 190:264–273

    Article  Google Scholar 

  • Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen TS, Satija R, Ruvkun G, Carr SA, Lander ES, Fink GR, Regev A (2013) High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155:1409–1421. https://doi.org/10.1016/j.cell.2013.10.047

    Article  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. https://doi.org/10.1007/s10858-009-9333-z

    Article  Google Scholar 

  • Sundheim O, Talstad VA, Vagbo CB, Slupphaug G, Krokan HE (2008) AlkB demethylases flip out in different ways. DNA Repair 7:1916–1923. https://doi.org/10.1016/j.dnarep.2008.07.015

    Article  Google Scholar 

  • Toh JDW, Sun L, Lau LZM, Tan J, Low JJA, Tang CWQ, Cheong EJY, Tan MJH, Chen Y, Hong W, Gao YG, Woon ECY (2015) A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N(6)-methyladenosine demethylase FTO. Chem Sci 6:112–122. https://doi.org/10.1039/c4sc02554g

    Article  Google Scholar 

  • Tong KI, Yamamoto M, Tanaka T (2008) A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli. J Biomol NMR 42:59–67. https://doi.org/10.1007/s10858-008-9264-0

    Article  Google Scholar 

  • Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408. https://doi.org/10.1093/nar/gkm957

    Google Scholar 

  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C (2014a) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120. https://doi.org/10.1038/nature12730

    Article  ADS  Google Scholar 

  • Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC (2014b) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16:191–198. https://doi.org/10.1038/ncb2902

    Article  Google Scholar 

  • Wei C, Gershowitz A, Moss B (1975) N6, O2′-dimethyladenosine a novel methylated ribonucleoside next to the 5′ terminal of animal cell and virus mRNAs. Nature 257:251–253

    Article  ADS  Google Scholar 

  • Wu R, Jiang D, Wang Y, Wang X (2016) N (6)-methyladenosine (m(6)A) methylation in mRNA with a dynamic and reversible epigenetic modification. Mol Biotechnol 58:450–459. https://doi.org/10.1007/s12033-016-9947-9

    Article  Google Scholar 

  • Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ, Min J (2014) Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem 289:17299–17311. https://doi.org/10.1074/jbc.M114.550350

    Article  Google Scholar 

  • Xu C, Liu K, Ahmed H, Loppnau P, Schapira M, Min J (2015) Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J Biol Chem 290:24902–24913. https://doi.org/10.1074/jbc.M115.680389

    Article  Google Scholar 

  • Yang T, Cheong A, Mai X, Zou S, Woon EC (2016) A methylation-switchable conformational probe for the sensitive and selective detection of RNA demethylase activity. Chem Commun 52:6181–6184. https://doi.org/10.1039/c6cc01045h

    Article  Google Scholar 

  • Yue Y, Liu J, He C (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29:1343–1355. https://doi.org/10.1101/gad.262766.115

    Article  Google Scholar 

  • Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, Rafalska I, Heinrich B, Bujnicki JM, Allain FH, Stamm S (2010) The YTH domain is a novel RNA binding domain. J Biol Chem 285:14701–14710. https://doi.org/10.1074/jbc.M110.104711

    Article  Google Scholar 

  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29. https://doi.org/10.1016/j.molcel.2012.10.015

    Article  Google Scholar 

  • Zheng G, Fu Y, He C (2014) Nucleic acid oxidation in DNA damage repair and epigenetics. Chem Rev 114:4602–4620. https://doi.org/10.1021/cr400432d

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by startup funding from Iowa State University (V.V.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Venditti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purslow, J.A., Venditti, V. 1H, 15N, 13C backbone resonance assignment of human Alkbh5. Biomol NMR Assign 12, 297–301 (2018). https://doi.org/10.1007/s12104-018-9826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-018-9826-3

Keywords

Navigation