Skip to main content
Log in

The Possibility of Using Far Infrared Fabrics to Promote Wound Healing from the Cellular Level

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Far infrared radiation has an important effect on the growth of organisms. In order to explore the effect on promoting wound healing by far infrared fabrics, four kinds of fabrics with different far infrared emissivity were selected. According to the emissivity of the far infrared fabrics in the wearing state, the fabrics were coated outside the cell culture dish. Keratinocyte HaCaT and vein endothelial cell Huvec were selected as wound healing related epithelial cells. The proliferation and migration of the two kinds of cells were tested by four kinds of fabrics. The results of cell experiment showed that far infrared radiation can significantly promote the proliferation and migration of HaCaT and Huvec epithelial cells related to wound healing. The results showed that the longer the time of far infrared radiation, the more significant the promotion of HaCaT and Huvec cell proliferation and migration. The far infrared emissivity of four kinds of fabrics and their differences in promoting epidermal blood perfusion were involved in the analysis together with their effects on cell growth. The results showed that tea carbon fabric had the highest far infrared emissivity, the highest promotion of epidermal blood flow, and the most significant promotion of cell proliferation. In a certain range, the higher the far infrared emissivity and the longer the wearing time, the stronger the promotion of the proliferation and migration of HaCaT and Huvec epithelial cells. Therefore, from the cellular level, it is considered that far infrared fabrics can promote wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Leung, Chin. J. Physiol., 58, 147 (2015).

    PubMed  Google Scholar 

  2. F. Vatansever and M. R. Hamblin, Photonics Lasers Med., 1, 255 (2012).

    Google Scholar 

  3. S. Y. Yu, J. H. Chiu, S. D. Yang, Y. C. Hsu, W. Y. Lui, and C. W. Wu, Photodermatol. Photoimmunol. Photomed., 22, 78 (2006).

    Article  CAS  Google Scholar 

  4. C. C. Lin, W. C. Yang, M. C. Chen, W. S. Liu, and P. C. Lee, Am. J. Kidney Dis., 62, 304 (2013).

    Article  Google Scholar 

  5. U. Hadimeri, A. Wärme, and B. Stegmayr, Clin. Hemorheol. Microcirc., 66, 211 (2017).

    Article  Google Scholar 

  6. A. Masuda, Y. Koga, M. Hattanmaru, S. Minagoe, and C. Tei, Psychother. Psychosom., 74, 288 (2005).

    Article  Google Scholar 

  7. S. M. Ou, F. H. Hu, W. C. Yang, and C. C. Lin, Am. J. Gastroenterol., 109, 1957 (2014).

    Article  CAS  Google Scholar 

  8. Y. H. Lin and T. S. Li, J. Evid. Based Complementary Altern. Med., 22, 186 (2017).

    Article  Google Scholar 

  9. H. W. Chiu, C. H. Chen, J. N. Chang, C. H. Chen, and Y. H. Hsu, J. Mol. Med., 94, 809 (2016).

    Article  CAS  Google Scholar 

  10. H. Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima, H. Nakanishi, A. H. Kwon, Y. Azuma, T. Nagaoka, and Y. Kamiyama, Exp. Biol. Med., 228, 724 (2003).

    Article  CAS  Google Scholar 

  11. A. R. Sheppard, M. L. Swicord, and Q. Balzano, Health Physics, 95, 365 (2008).

    Article  CAS  Google Scholar 

  12. Y. Hamada, F. Teraoka, T. Matsumoto, A. Madachi, F. Toki, E. Uda, R. Hase, J. Takahashi, and N. Matsuura, Int. Congr. Ser., 1255, 339 (2003).

    Article  Google Scholar 

  13. J. H. Lin, Y. T. Huang, T. T. Li, C. M. Lin, and C. W. Lou, J. Ind. Text., 46, 624 (2016).

    Article  CAS  Google Scholar 

  14. N. Chen, Text. Ind. Technol., 48, 4 (2019).

    Google Scholar 

  15. M. S. Butt and M. T. Sultan, Critical Reviews in Food Science and Nutrition, 51, 363 (2011).

    Article  CAS  Google Scholar 

  16. X. Hu, M. Tian, L. Qu, S. Zhu, and G. Han, Carbon, 95, 625 (2015).

    Article  CAS  Google Scholar 

  17. W. L. Lan and C. F. J. Kuo, Text. Res. J., 89, 2247 (2018).

    Article  Google Scholar 

  18. J. Ren, P. Li, H. Zhao, D. Chen, J. Zhen, Y. Wang, Y. Wang, and Y. Gu, Lasers Med. Sci., 29, 781 (2014).

    Article  Google Scholar 

  19. Y. Y. Wang, Master’s Thesis, Zhejiang Sci-tech University, 2020.

  20. F. Xu, Y. Guo, and X. Liu, J. Microcirculation, 24, 71 (2014).

    Google Scholar 

  21. J. R. S. Hales, C. Jessen, A. A. Fawcett, and R. B. King, Pflügers Archiv-Eur. J. Physiol., 404, 203 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zimin Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Jin, Z., Yan, Y. et al. The Possibility of Using Far Infrared Fabrics to Promote Wound Healing from the Cellular Level. Fibers Polym 22, 2206–2214 (2021). https://doi.org/10.1007/s12221-021-0182-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0182-z

Keywords

Navigation