Skip to main content

Advertisement

Log in

A Fast-Degradable Nano-dressing with Potent Antibacterial Effect

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this study, clove essential oil was used as a green antibacterial agent. Its nanoemulsion dosage form with particle size 217.7 ± 11.45 nm and PDI 0.66 ± 0.09 was first prepared. By adding carbomer 940, nanoemulsion was then transformed into the nanogel (NGel) to improve the essential oil’s activity and stability. Electrospun nanofibers of polyvinyl alcohol (PVANFs) with a mean diameter of 216 ± 14 nm were then prepared. The required characterizations such as ATR-FTIR spectroscopy, SEM image, and water contact angle were carried out. To easy usage topically, the NGel was impregnated on the PVANFs mat (NGelNFs). Interestingly, the prepared fast-degradable NGelNFs could inhibit (100%) the growth of four important pathogens, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia. Besides, the dressing was degraded after minutes of usage. The prepared GelNFs could be used as a capable and fast-degradable antibacterial substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta, K. C., Haider, A., Choi, Y.-r., & Kang, I.-k. (2014). Nanofibrous scaffolds in biomedical applications. Biomaterials Research, 18. https://doi.org/10.1186/2055-7124-18-5.

  2. Osanloo, M., Assadpour, S., Mehravaran, A., Abastabar, M., & Akhtari, J. (2018). Niosome-loaded antifungal drugs as an effective nanocarrier system: A mini review. Current Medical Mycology, 4, 31–36.

    Google Scholar 

  3. He, J.-H., Kong, H.-Y., Yang, R.-R., Dou, H., Faraz, N., Wang, L., & Feng, C. (2012). Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning. Thermal Science, 16, 1263–1279.

    Article  Google Scholar 

  4. Osanloo, M., Arish, J., & Sereshti, H. (2019). Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: A systematic review. Polymer Bulletin, 1–20. https://doi.org/10.1007/s00289-019-03042-0

  5. Naghibzadeh, M., & Adabi, M. (2014). Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fibers and Polymers, 15, 767–777.

    Article  Google Scholar 

  6. Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28, 325–347.

    Article  Google Scholar 

  7. Krishnan, R., Sundarrajan, S., & Ramakrishna, S. (2013). Green processing of nanofibers for regenerative medicine. Macromolecular Materials and Engineering, 298, 1034–1058.

    Article  Google Scholar 

  8. Sridhar, R., Sundarrajan, S., Vanangamudi, A., Singh, G., Matsuura, T., & Ramakrishna, S. (2014). Green processing mediated novel polyelectrolyte nanofibers and their antimicrobial evaluation. Macromolecular Materials and Engineering, 299, 283–289.

    Article  Google Scholar 

  9. Alfonsi, K., Colberg, J., Dunn, P. J., Fevig, T., Jennings, S., Johnson, T. A., Kleine, H. P., Knight, C., Nagy, M. A., & Perry, D. A. (2008). Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry, 10, 31–36.

    Article  Google Scholar 

  10. Linh, N. T. B., Min, Y. K., Song, H. Y., & Lee, B. T. (2010). Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95, 184–191.

    Article  Google Scholar 

  11. Baker, M. I., Walsh, S. P., Schwartz, Z., & Boyan, B. D. (2012). A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100, 1451–1457.

    Article  Google Scholar 

  12. Moura, L. I., Dias, A. M., Carvalho, E., & de Sousa, H. C. (2013). Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomaterialia, 9, 7093–7114.

    Article  Google Scholar 

  13. Fu, S. Z., Meng, X. H., Fan, J., Yang, L. L., Wen, Q. L., Ye, S. J., Lin, S., Wang, B. Q., Chen, L. L., & Wu, J. B. (2014). Acceleration of dermal wound healing by using electrospun curcumin-loaded poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone) fibrous mats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102, 533–542.

    Article  Google Scholar 

  14. Mylonas, C. C., Cardinaletti, G., Sigelaki, I., & Polzonetti-Magni, A. (2005). Comparative efficacy of clove oil and 2-phenoxyethanol as anesthetics in the aquaculture of European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) at different temperatures. Aquaculture (Amsterdam, Netherlands), 246, 467–481.

    Article  Google Scholar 

  15. Saeed, S., & Tariq, P. (2008). In vitro antibacterial activity of clove against Gram negative bacteria. Pakistan Journal of Botany, 40, 2157–2160.

    Google Scholar 

  16. Cui, H., Zhao, C., & Lin, L. (2015). The specific antibacterial activity of liposome-encapsulated clove oil and its application in tofu. Food Control, 56, 128–134.

    Article  Google Scholar 

  17. Liu, Q., Meng, X., Li, Y., Zhao, C.-N., Tang, G.-Y., & Li, H.-B. (2017). Antibacterial and antifungal activities of spices. International Journal of Molecular Sciences, 18, 1283.

    Article  Google Scholar 

  18. Moemenbellah-Fard, M., Abdollahi, A., Ghanbariasad, A., & Osanloo, M. (2020). Antibacterial and leishmanicidal activities of Syzygium aromaticum essential oil versus its major ingredient, eugenol. Flavour and Fragrance Journal, 35, 534–540.

    Article  Google Scholar 

  19. Li, X., Kanjwal, M. A., Lin, L., & Chronakis, I. S. (2013). Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids and Surfaces B: Biointerfaces, 103, 182–188.

    Article  Google Scholar 

  20. Osanloo, M., Abdollahi, A., Valizadeh, A., & Abedinpour, N. (2020). Antibacterial potential of essential oils of Zataria multiflora and Mentha piperita, micro-and nano-formulated forms. Iranian Journal of Microbiology, 12, 43–51.

    Google Scholar 

  21. Barboza, J. N., da Silva Maia Bezerra Filho, C., Silva, R. O., Medeiros, J. V. R., & de Sousa, D. P. (2018). An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxidative Medicine and Cellular Longevity, 2018, 1–6.

    Article  Google Scholar 

  22. Anwer, M. K., Jamil, S., Ibnouf, E. O., & Shakeel, F. (2014). Enhanced antibacterial effects of clove essential oil by nanoemulsion. Journal of Oleo Science, 63, 347–354.

  23. de Meneses, A. C., Sayer, C., Puton, B. M., Cansian, R. L., Araújo, P. H., & de Oliveira, D. (2019). Production of clove oil nanoemulsion with rapid and enhanced antimicrobial activity against gram-positive and gram-negative bacteria. Journal of Food Process Engineering, 42, e13209.

    Article  Google Scholar 

  24. Periasamy, V. S., Athinarayanan, J., & Alshatwi, A. A. (2016). Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrasonics Sonochemistry, 31, 449–455.

    Article  Google Scholar 

  25. Mahdi Jafari, S., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization—A comparison. International Journal of Food Properties, 9, 475–485.

    Article  Google Scholar 

  26. Gaikwad, S. G., & Pandit, A. B. (2008). Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry, 15, 554–563.

    Article  Google Scholar 

  27. Zare, Y., Park, S. P., & Rhee, K. Y. (2019). Analysis of complex viscosity and shear thinning behavior in poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes biosensor based on Carreau–Yasuda model. Results in Physics, 13, 102245.

    Article  Google Scholar 

  28. Look, M., Stern, E., Wang, Q. A., DiPlacido, L. D., Kashgarian, M., Craft, J., & Fahmy, T. M. (2013). Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. The Journal of Clinical Investigation, 123, 1741–1749.

    Article  Google Scholar 

  29. Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2011). Design and engineering of nanogels for cancer treatment. Drug Discovery Today, 16, 457–463.

    Article  Google Scholar 

  30. Nukolova, N. V., Oberoi, H. S., Cohen, S. M., Kabanov, A. V., & Bronich, T. K. (2011). Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials, 32, 5417–5426.

    Article  Google Scholar 

  31. Mi, F.-L., Sung, H.-W., Shyu, S.-S., Su, C.-C., & Peng, C.-K. (2003). Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer, 44, 6521–6530.

    Article  Google Scholar 

  32. Zhang, W., Yao, R., Tao, W., He, H., & Shui, S. (2014). Preparation of monodisperse HPMC/PAA hybrid nanogels via surfactant-free seed polymerization. Colloid and Polymer Science, 292, 317–324.

    Article  Google Scholar 

  33. Al-Awady, M. J., Fauchet, A., Greenway, G. M., & Paunov, V. N. (2017). Enhanced antimicrobial effect of berberine in nanogel carriers with cationic surface functionality. Journal of Materials Chemistry B, 5, 7885–7897.

    Article  Google Scholar 

  34. Morsi, N., Ibrahim, M., Refai, H., & El Sorogy, H. (2017). Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. European Journal of Pharmaceutical Sciences, 104, 302–314.

    Article  Google Scholar 

  35. Unalan, I., Endlein, S. J., Slavik, B., Buettner, A., Goldmann, W. H., Detsch, R., & Boccaccini, A. R. (2019). Evaluation of electrospun poly (ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing. Pharmaceutics, 11, 570.

    Article  Google Scholar 

  36. Semnani, K., Shams-Ghahfarokhi, M., Afrashi, M., Fakhrali, A., & Semnani, D. (2018). Antifungal activity of eugenol loaded electrospun pan nanofiber mats against Candida albicans. Current Drug Delivery, 15, 860–866.

    Article  Google Scholar 

  37. Unalan, I., Slavik, B., Buettner, A., Goldmann, W. H., Frank, G., & Boccaccini, A. R. (2019). Physical and antibacterial properties of peppermint essential oil loaded poly (ε-caprolactone)(PCL) electrospun fiber mats for wound healing. Frontiers in Bioengineering and Biotechnology, 7, 346.

    Article  Google Scholar 

Download references

Funding

Fasa University of Medical Sciences supported this work (Grant No. 97090). Also, this research has been ethically approved, IR.FUMS.REC.1397.152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Osanloo.

Ethics declarations

Conflict of Interest

There is no conflict of interest among the authors.

Research Involving Humans and Animals Statement

This research did not include human and in vivo studies, and all experiments were performed in in vitro condition. After preparing the study’s final prototype only to observe the degradation of that on the human skin, it was applied to the corresponding author’s hand. This observation was vital for the design of subsequent studies.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarenezhad, E., Abdollahi, A., Esmaeili, F. et al. A Fast-Degradable Nano-dressing with Potent Antibacterial Effect. BioNanoSci. 10, 983–990 (2020). https://doi.org/10.1007/s12668-020-00790-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00790-6

Keywords

Navigation