Skip to main content
Log in

Gibbs sampling, conjugate priors and coupling

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We give a large family of simple examples where a sharp analysis of the Gibbs sampler can be proved by coupling. These examples involve standard statistical models — exponential families with conjugate priors or location families with natural priors. Our main approach uses a single eigenfunction (always explicitly available in the examples in question) and stochastic monotonicity. We give a satisfactory treatment of several examples that have defeated previous attempts at analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldous, D. and Diaconis, P. (1986). Shuffling cards and stopping times. Amer. Math. Monthly, 93, 333–348.

    Article  MATH  MathSciNet  Google Scholar 

  • Aldous, D. and Diaconis, P. (1987). Strong uniform times and finite random walks. Adv. in Appl. Math., 8, 69–97.

    Article  MATH  MathSciNet  Google Scholar 

  • Andersen, H. and Diaconis, P. (2007). Hit and run as a unifying device. J. Soc. Fr. Stat. & Rev. Stat. Appl., 148, 5–28.

    MathSciNet  Google Scholar 

  • Athreya, K., Doss, H. and Sethuraman, J. (1996). On the convergence of the Markov chain simulation method. Ann. Statist., 24, 89–100.

    MathSciNet  Google Scholar 

  • Barankin, E.W. and Maitra, A.P. (1963). Generalization of the Fisher-Darmois-Koopman-Pitman theorem on sufficient statistics. Sankhyā, Ser. A, 25, 217–244.

    MATH  MathSciNet  Google Scholar 

  • Berti, P., Consonni, G. and Pratelli, L. (2009). Discussion on the paper: Gibbs sampling, exponential families and orthogonal polynomials. Statist. Sci., 23, 179–182.

    Article  Google Scholar 

  • Brown, L.D., Johnstone, I.M. and McGibbon, K.B. (1981). Variance diminishing transformations: A direct approach to total positivity and its statistical applications. J. Amer. Statist. Assoc., 76, 824–832.

    Article  MATH  MathSciNet  Google Scholar 

  • Casella, G. and George, E. (1992). Explaining the Gibbs sampler. Amer. Statist., 46, 167–174.

    Article  MathSciNet  Google Scholar 

  • Diaconis, P. (1988). Group Representations in Probability and Statistics. Institute of Mathematical Statistics — Monograph Series, 11. Institute of Mathematical Statistics, Hayward, California.

    MATH  Google Scholar 

  • Diaconis, P. and Fill, J. (1990). Strong stationary times via a new form of duality. Ann. Probab., 16, 1483–1522.

    Article  MathSciNet  Google Scholar 

  • Diaconis, P. and Fulman, J. (2008). Carries, shuffling and an amazing matrix. Amer. Math. Monthly, 116, 788–803.

    Article  MathSciNet  Google Scholar 

  • Diaconis, P. and Fulman, J. (2009). Carries, shuffling, symmetric function. Adv. In Appl. Math., 43, 176–196.

    Article  MATH  MathSciNet  Google Scholar 

  • Diaconis, P., Khare, K. and Saloff-Coste L. (2008). Gibbs sampling, exponential families and orthogonal polynomials. Statist. Sci., 23, 151–178.

    Article  MathSciNet  Google Scholar 

  • Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential families. Ann. Statist., 7, 269–281.

    Article  MATH  MathSciNet  Google Scholar 

  • Diaconis, P. and Ylvisaker, D. (1985). Quantifying prior opinion. In Bayesian Statistics, 2 (Valencia, 1983), (J.M. Bernardo, M.H. Degroot, D.V. Lindley, A.F.M. Smith, eds.). North Holland, Amstredam, 133–156.

    Google Scholar 

  • Diaconis, P. and Zabell, S. (1991). Closed form summation for classical distributions: Variations on a theme of deMoivre. Statist. Sci., 61, 284–302.

    Article  MathSciNet  Google Scholar 

  • Dudley, R.M. (1989). Real Analysis and Probability. Wadsworth, Belmont, CA.

    MATH  Google Scholar 

  • Esch, D. (2003). The skew-t distribution: Properties and computations. Ph.D. Dissertation, Department of Statistics, Harvard University.

  • Fill, J. and Machida, M. (2001). Stochastic monotonicity and realizable monotonicity. Ann. Appl. Probab., 29, 938–978.

    MATH  MathSciNet  Google Scholar 

  • Givens, C. and Shortt, R. (1984). A class of Wasserstein metrics for probability distributions. Michigan Math. J., 31, 231–240.

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, G.L. and Hobert, J.P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci.16, 312–334.

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, G.L. and Hobert, J.P. (2004). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist., 32, 784–817.

    Article  MATH  MathSciNet  Google Scholar 

  • Karlin, S. (1968). Total Positivity. Stanford University Press, Stanford.

    MATH  Google Scholar 

  • Khare, K. and Zhou, H. (2009). Rates of convergence of some multivariate Markov chains with polynomial eigenfunctions. Ann. Appl. Probab., 19, 737–777.

    Article  MATH  MathSciNet  Google Scholar 

  • Lehmann, E. and Romano, J. (2005). Testing Statistical Hypotheses. Springer, New York.

    MATH  Google Scholar 

  • Liu, J. (2001). Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Lund, R.B. and Tweedie, R.L. (1996). Geometric convergence rates for stochastically ordered Markov chains. Math. Oper. Res., 20, 182–194.

    Article  MathSciNet  Google Scholar 

  • Meyn, S.P. and Tweedie, R.L. (1993). Markov Chains and Stochastic Stability. Springer-Verlag, London.

    MATH  Google Scholar 

  • Morris, C. (1982). Natural exponential families with quadratic variance functions. Ann. Statist., 10, 65–80.

    Article  MATH  MathSciNet  Google Scholar 

  • Morris, C. (1983). Natural exponential families with quadratic variance functions: Statistical theory. Ann. Statist.11, 515–589.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenthal. J.S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc., 90, 558–566.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenthal, J.S. (1996). Analysis of the Gibbs sampler for a model related to James-Stein estimations. Statist. Comput., 6, 269–275.

    Article  Google Scholar 

  • Rosenthal, J.S. (2002). Quantitative convergence rates of Markov chains: A simple account. Electron. Comm. Probab., 7, 123–128.

    MathSciNet  Google Scholar 

  • Saloff-Coste, L. (2004). Total variation lower bounds for finite Markov chains: Wilson’s lemma. In Random Walks and Geometry, (V.A. Kaimanovich, K. Schmidt and W. Woess, eds.). Walter de Gruyter GmbH and Co. KG, Berlin, 515–532.

    Google Scholar 

  • Stanley, R. (1989). Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In Graph Theory and Its Applications: East and West (Jinan, 1986). Ann. New York Acad. Sci., 576, New York Acad. Sci., New York, 500–535.

    Google Scholar 

  • Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models. John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist., 22, 1701–1762.

    Article  MATH  MathSciNet  Google Scholar 

  • Wilson, D.B. (2004). Mixing times of lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab., 14, 274–325.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Persi Diaconis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaconis, P., Khare, K. & Saloff-Coste, L. Gibbs sampling, conjugate priors and coupling. Sankhya 72, 136–169 (2010). https://doi.org/10.1007/s13171-010-0004-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-010-0004-7

AMS (2000) subject classification

Keywords and phrases

Navigation