Skip to main content
Log in

Knockdown of eIF3a attenuated cell growth in K1 human thyroid cancer cells

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

In ribosome establishment and the initiation of translation, eukaryotic translation initiation factor (eIF) 3a is a pivotal functional subunit of the eIF3 complex. In various cancer types, abnormal eIF3a expression plays an important role in tumorigenesis.

Objective

We aimed to explore the role of eIF3a in human thyroid cancer (TC).

Material and methods

The expression of eIF3a was determined in TC tissues by qRT-PCR and immunohistochemistry (IHC) assay, respectively. In addition, the expression of eIF3a in K1 and BCPAP cells were detected by qRT-PCR. Cell proliferation, cell cycle, and cell apoptosis were assessed after eIF3a knockdown in K1 in cell line.

Results

The expression of eIF3a mRNA was high in TC tissues and cancer cell lines. Moreover, eIF3a expression in TC tissues indicated that high eIF3a level was associated with tumor grade. In addition, eIF3a knockdown resulted in a significantly decrease in cell proliferation and increased the apoptosis of K1 cells. Cell cycle was arrested in both the S and G2/M phase. The levels of phosphorylated ERK1/2 and surviving were decreased after eIF3a knockdown.

Conclusion

Our study suggested that eIF3a contributed to TC cell proliferation. It may be a promising target for gene therapy in human thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Are C, Shaha AR (2006) Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol 13(4):453–464

    Article  PubMed  Google Scholar 

  • Asano K, Vornlocher HP, Richter-Cook NJ, Merrick WC, Hinnebusch AG, Hershey JW (1997) Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J Biol Chem 272(43):27042–27052

    Article  CAS  PubMed  Google Scholar 

  • Aylett CH, Boehringer D, Erzberger JP, Schaefer T, Ban N (2015) Structure of a yeast 40S-eIF1-eIF1A-eIF3-eIF3j initiation complex. Nat Struct Mol Biol 22(3):269–271

    Article  CAS  PubMed  Google Scholar 

  • Bachmann F, Banziger R, Burger MM (1997) Cloning of a novel protein overexpressed in human mammary carcinoma. Cancer Res 57(5):988–994

    CAS  PubMed  Google Scholar 

  • Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, Kang H, Chen X, Sun X, Xu J (2015) ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol 32(3):57

    Article  PubMed  Google Scholar 

  • Chen G, Burger MM (1999) p150 expression and its prognostic value in squamous-cell carcinoma of the esophagus. Int J Cancer 84(2):95–100

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Burger MM (2004) p150 overexpression in gastric carcinoma: the association with p53, apoptosis and cell proliferation. Int J Cancer 112(3):393–398

    Article  CAS  PubMed  Google Scholar 

  • Dellas A, Torhorst J, Bachmann F, Bänziger R, Schultheiss E, Burger MM (1998) Expression of p150 in cervical neoplasia and its potential value in predicting survival. Cancer 83(7):1376–1383

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Zhang JT (2006) Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit Rev Oncol Hematol 59(3):169–180

    Article  PubMed  Google Scholar 

  • Dong Z, Arnold RJ, Yang Y, Park MH, Hrncirova P, Mechref Y, Novotny MV, Zhang JT (2005a) Modulation of differentiation-related gene 1 expression by cell cycle blocker mimosine, revealed by proteomic analysis. Mol Cell Proteom 4(7):993–1001

    Article  CAS  Google Scholar 

  • Dong Z, Liu Y, Zhang JT (2005b) Regulation of ribonucleotide reductase M2 expression by the upstream AUGs. Nucleic Acids Res 33(8):2715–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Liu Z, Cui P, Pincheira R, Yang Y, Liu J, Zhang JT (2009) Role of eIF3a in regulating cell cycle progression. Exp Cell Res 315(11):1889–1894

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Yin Y, Zhu YR, Guo C, Wei G, Duan JL, Wang YH, Zhou D, Quan W, Weng Y et al (2013) Dissection of mechanisms of a chinese medicinal formula: Danhong injection therapy for myocardial ischemia/reperfusion injury in vivo and in vitro. Evid Based Complement Altern Med 2013:972370

    Article  Google Scholar 

  • Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M et al (2016) 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1):1–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Haybaeck J, O’Connor T, Spilka R, Spizzo G, Ensinger C, Mikuz G, Brunhuber T, Vogetseder A, Theurl I, Salvenmoser W et al (2010) Overexpression of p150, a part of the large subunit of the eukaryotic translation initiation factor 3, in colon cancer. Anticancer Res 30(4):1047–1055

    CAS  PubMed  Google Scholar 

  • He J, Shi J, Fu X, Mao L, Zhou T, Qiu Y, Zhu B (2015) The clinicopathologic and prognostic significance of gross classification on solitary hepatocellular carcinoma after hepatectomy. Medicine (Baltimore) 94(32):e1331

    Article  CAS  Google Scholar 

  • Hsu KT, Yu XM, Audhya AW, Jaume JC, Lloyd RV, Miyamoto S, Prolla TA, Chen H (2014) Novel approaches in anaplastic thyroid cancer therapy. Oncologist 19(11):1148–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Käsmann L, Bolm L, Janssen S, Rades D (2016) Prognostic factors for survival in patients treated with multimodal therapy for anaplastic thyroid cancer. Anticancer Res 36(9):4697–4700

    Article  PubMed  Google Scholar 

  • LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradlety CA, Hershey JWB, Rhoads RE (2006) Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem 281(32):22917–22932

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Dong Z, Yang Z, Chen Q, Pan Y, Yang Y, Cui P, Zhang X, Zhang JT (2007) Role of eIF3a (eIF3 p170) in intestinal cell differentiation and its association with early development. Differentiation 75(7):652–661

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Lei Z, Yao H, Lei S, Zhao H (2016) Impact of a eukaryotic translation initiation factor 3a polymorphism on susceptibility to gastric cancer. Med Princ Pract 25(5):461–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Maitra U, Stringer EA, Chaudhuri A (1982) Initiation factors in protein biosynthesis. Annu Rev Biochem 51:869–900

    Article  CAS  PubMed  Google Scholar 

  • Pacini F (2008) Where do we stand with targeted therapy of refractory thyroid cancer?—utility of RECIST criteria. Thyroid 18(3):279–280

    Article  PubMed  Google Scholar 

  • Peery RC, Liu JY, Zhang JT (2017) Targeting survivin for therapeutic discovery: past, present, and future promises. Drug Discov Today 22(10):1466–1477

    Article  CAS  PubMed  Google Scholar 

  • Pelizzo MR, Boschin IM, Bernante P, Toniato A, Piotto A, Pagetta C, Nibale O, Pampin L, Muzzio PC, Rubello D (2007) Natural history, diagnosis, treatment and outcome of medullary thyroid cancer: 37 years experience on 157 patients. Eur J Surg Oncol 33(4):493–497

    Article  CAS  PubMed  Google Scholar 

  • Pezzi TA, Mohamed ASR, Sheu T, Blanchard P, Sandulache VC, Lai SY, Cabanillas ME, Williams MD, Pezzi CM, Lu C et al (2017) Radiation therapy dose is associated with improved survival for unresected anaplastic thyroid carcinoma: outcomes from the national cancer data base. Cancer 123(9):1653–1661

    Article  PubMed  Google Scholar 

  • Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66(2):105–143

    Article  CAS  PubMed  Google Scholar 

  • Saletta F, Rahmanto YS, Richardson DR (2010) The translational regulator eIF3a: the tricky eIF3 subunit! Biochim Biophys Acta 1806(2):275–286

    CAS  PubMed  Google Scholar 

  • Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y, Nishikawa T, Shuno Y, Hongo K, Hiyoshi M et al (2010) Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10:370

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Yin JY, Li XP, Liu ZQ, Wang Y, Chen J, Qu J, Xu XJ, Mcleod HL et al (2014) The prognostic value of altered eIF3a and its association with p27 in non-small cell lung cancers. PLoS ONE 9(4):e96008

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith MD, Gu Y, Querol-Audi J, Vogan JM, Nitido A, Cate JHD (2013) Human-like eukaryotic translation initiation factor 3 from Neurospora crassa. PLoS ONE 8(11):e78715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spilka R, Laimer K, Bachmann F, Spizzo G, Vogetseder A, Wieser M, Müller H, Haybaeck J, Obrist P (2012) Overexpression of eIF3a in squamous cell carcinoma of the oral cavity and its putative relation to chemotherapy response. J Oncol 2012:901956

    Article  PubMed  PubMed Central  Google Scholar 

  • Spilka R, Ernst C, Bergler H, Rainer J, Flechsig S, Vogetseder A, Lederer E, Benesch M, Brunner A, Geley S et al (2014) eIF3a is over-expressed in urinary bladder cancer and influences its phenotype independent of translation initiation. Cell Oncol (Dordr) 37(4):253–267

    Article  CAS  Google Scholar 

  • Stroopinsky D, Rajabi H, Nahas M, Rosenblatt J, Rahimian M, Pyzer A, Tagde A, Kharbanda A, Jain S, Kufe T et al (2018) MUC1-C drives myeloid leukaemogenesis and resistance to treatment by a survivin-mediated mechanism. J Cell Mol Med 22(8):3887–3898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Unbehaun A, Borukhov SI, Hellen CU, Pestova TV (2004) Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev 18(24):3078–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YH, Li XW, Li WQ, Li XH, Li YJ, Hu GY, Liu ZQ, Li D (2016) Fluorofenidone attenuates bleomycin-induced pulmonary fibrosis by inhibiting eukaryotic translation initiation factor 3a (eIF3a) in rats. Eur J Pharmacol 773:42–50

    Article  CAS  PubMed  Google Scholar 

  • Yin JY, Dong Z, Liu ZQ, Zhang JT (2011a) Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 31(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Yin JY, Shen J, Dong ZZ, Huang Q, Zhong MZ, Feng DY, Zhou HH, Zhang JT, Liu ZQ (2011b) Effect of eIF3a on response of lung cancer patients to platinum-based chemotherapy by regulating DNA repair. Clin Cancer Res 17(13):4600–4609

    Article  CAS  PubMed  Google Scholar 

  • Yin JY, Zhang JT, Zhang W, Zhou HH, Liu ZQ (2018) eIF3a: a new anticancer drug target in the eIF family. Cancer Lett 412:81–87

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pan X, Hershey JW (2007) Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J Biol Chem 282(8):5790–5800

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yu JJ, Tian Y, Li ZZ, Zhang CY, Zhang SF, Cao LQ, Zhang Y, Qian CY, Zhang W et al (2015) eIF3a improve cisplatin sensitivity in ovarian cancer by regulating XPC and p27Kip1 translation. Oncotarget 6(28):25441–25451

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Arslan F, Wee S, Ivanov AR, Oliva A, Leatherwood J, Wolf DA (2005) PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol 3:14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

(1) Conception and design: SW. (2) Data download and process: XZ. (3) Data analysis: SH, JL, CJ. (4) Manuscript writing: XZ, SW. (5) Final approval of manuscript: all authors.

Corresponding author

Correspondence to Shengying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The present study was approved by the Medical Ethics Committee of the First Affiliated Hospital of University of Science and Technology of China.

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Wang, S., Hong, S. et al. Knockdown of eIF3a attenuated cell growth in K1 human thyroid cancer cells. Genes Genom 43, 379–388 (2021). https://doi.org/10.1007/s13258-021-01048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01048-5

Keywords

Navigation