Skip to main content
Log in

Monocyte-mediated drug delivery systems for the treatment of cardiovascular diseases

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Major advances have been achieved in understanding the mechanisms and risk factors leading to cardiovascular disorders and consequently developing new therapies. A strong inflammatory response occurs with a substantial recruitment of innate immunity cells in atherosclerosis, myocardial infarction, and restenosis. Monocytes and macrophages are key players in the healing process that ensues following injury. In the inflamed arterial wall, monocytes, and monocyte-derived macrophages have specific functions in the initiation and resolution of inflammation, principally through phagocytosis, and the release of inflammatory cytokines and reactive oxygen species. In this review, we will focus on delivery systems, mainly nanoparticles, for modulating circulating monocytes/monocyte-derived macrophages. We review the different strategies of depletion or modulation of circulating monocytes and monocyte subtypes, using polymeric nanoparticles and liposomes for the therapy of myocardial infarction and restenosis. We will further discuss the strategies of exploiting circulating monocytes for biological targeting of nanocarrier-based drug delivery systems for therapeutic and diagnostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALN-NPs:

Alendronate nanoparticles

BPs:

Bisphosphonates

CHD:

Coronary heart disease

CM:

Classical monocytes

CVD:

Cardiovascular disease(s)

DDS:

Drug delivery system(s)

DES:

Drug eluting stent

EC:

Endothelial cells

DM:

Diabetes mellitus

EPR:

Enhanced permeability and retention effect

Ga:

Gallium

Gd:

Gadolinium

IM:

Intermediate monocytes

LipALN:

Liposomal alendronate

LipCLOD:

Liposomal clodronate

LipQDs:

Liposomal quantum dots

MI:

Myocardial infraction

MPS:

Mononuclear phagocytic system

Nc :

Number concentration

NCM:

Non-classical monocytes

NPs:

Nanoparticles

PCI:

Percutaneous coronary intervention(s)

PEG:

Polyethylene glycol

PLGA:

Poly(d,l-lactide co-glycolide)

QDs:

Quantum dots

QY:

Quantum yield

siCCR2:

siRNA sequence against CCR2

SMC:

Smooth muscle cells

References

  1. Benjamin. Heart disease and stroke statistics —2017 update: a report from the American Heart Association (vol 135, pg e146, 2017). Circulation. 2017;135(10):E646-E.

  2. Faxon DP. Systemic drug therapy for restenosis: “deja vu all over again”. Circulation. 2002;106(18):2296–8.

    Article  PubMed  Google Scholar 

  3. Garas SM, Huber P, Scott NA. Overview of therapies for prevention of restenosis after coronary interventions. Pharmacol Ther. 2001;92(2–3):165–78.

    Article  PubMed  CAS  Google Scholar 

  4. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent study group. N Engl J Med. 1994;331(8):489–95.

    Article  PubMed  CAS  Google Scholar 

  5. Lowe HC, Oesterle SN, Khachigian LM. Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol. 2002;39(2):183–93.

    Article  PubMed  Google Scholar 

  6. Packard RR, Lichtman AH, Libby P. Innate and adaptive immunity in atherosclerosis. Semin Immunopathol. 2009;31(1):5–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dangas GD, Claessen BE, Caixeta A, Sanidas EA, Mintz GS, Mehran R. In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol. 2010;56(23):1897–907.

    Article  PubMed  Google Scholar 

  8. Inoue T, Node K. Molecular basis of restenosis and novel issues of drug-eluting stents. Circ J. 2009;73(4):615–21.

    Article  PubMed  CAS  Google Scholar 

  9. Kastrati A, Mehilli J, Dirschinger J, Pache J, Ulm K, Schuhlen H, et al. Restenosis after coronary placement of various stent types. Am J Cardiol. 2001;87(1):34–9.

    Article  PubMed  CAS  Google Scholar 

  10. Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res. 1995;76(3):412–7.

    Article  PubMed  CAS  Google Scholar 

  11. Stone GW, Ellis SG, Cox DA, Hermiller J, O'Shaughnessy C, Mann JT, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350(3):221–31.

    Article  PubMed  CAS  Google Scholar 

  12. Kastrati A, Mehilli J, von Beckerath N, Dibra A, Hausleiter J, Pache J, et al. Sirolimus-eluting stent or paclitaxel-eluting stent vs balloon angioplasty for prevention of recurrences in patients with coronary in-stent restenosis: a randomized controlled trial. JAMA. 2005;293(2):165–71.

    Article  PubMed  CAS  Google Scholar 

  13. Poder TG, Erraji J, Coulibaly LP, Koffi K. Percutaneous coronary intervention with second-generation drug-eluting stent versus bare-metal stent: systematic review and cost-benefit analysis. PLoS One. 2017;12(5):e0177476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Arroyo D, Gendre G, Schukraft S, Kallinikou Z, Muller O, Baeriswyl G et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds: two-year clinical outcomes of the EVERBIO II trial. Int J Cardiol 2017; 243:121-125.

  15. Park SJ, Shim WH, Ho DS, Raizner AE, Park SW, Hong MK, et al. A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med. 2003;348(16):1537–45.

    Article  PubMed  CAS  Google Scholar 

  16. Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci. 2010;31(5):199–205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ruiz-Esparza GU, Flores-Arredondo JH, Segura-Ibarra V, Torre-Amione G, Ferrari M, Blanco E, et al. The physiology of cardiovascular disease and innovative liposomal platforms for therapy. Int J Nanomedicine. 2013;8:629–40.

    PubMed  PubMed Central  Google Scholar 

  18. Singh B, Garg T, Goyal AK, Rath G. Recent advancements in the cardiovascular drug carriers. Artif Cells Nanomed Biotechnol. 2016;44(1):216–25.

    Article  PubMed  CAS  Google Scholar 

  19. Matoba T, Koga JI, Nakano K, Egashira K, Tsutsui H. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J Cardiol 2017;70(3):206-211.

  20. Ta HT, Truong NP, Whittaker AK, Davis TP, Peter K. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opin Drug Deliv. 2017:1–13.

  21. Banai S, Chorny M, Gertz SD, Fishbein I, Gao J, Perez L, et al. Locally delivered nanoencapsulated tyrphostin (AGL-2043) reduces neointima formation in balloon-injured rat carotid and stented porcine coronary arteries. Biomaterials. 2005;26(4):451–61.

    Article  PubMed  CAS  Google Scholar 

  22. Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics. 2014;4(2):175–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chorny M, Fishbein I, Yellen BB, Alferiev IS, Bakay M, Ganta S, et al. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc Natl Acad Sci U S A. 2010;107(18):8346–51.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tsukie N, Nakano K, Matoba T, Masuda S, Iwata E, Miyagawa M, et al. Pitavastatin-incorporated nanoparticle-eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model. J Atheroscler Thromb. 2013;20(1):32–45.

    Article  PubMed  CAS  Google Scholar 

  25. Danenberg HD, Fishbein I, Gao J, Monkkonen J, Reich R, Gati I, et al. Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation. 2002;106(5):599–605.

    Article  PubMed  CAS  Google Scholar 

  26. Gutman D, Golomb G. Liposomal alendronate for the treatment of restenosis. J Control Release. 2012;161(2):619–27.

    Article  PubMed  CAS  Google Scholar 

  27. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356–61.

    Article  PubMed  CAS  Google Scholar 

  28. Fernandes JV, Cobucci RN, Jatoba CA, Fernandes TA, de Azevedo JW, de Araujo JM. The role of the mediators of inflammation in cancer development. Pathol Oncol Res. 2015;21(3):527–34.

    Article  PubMed  CAS  Google Scholar 

  29. Toutouzas K, Colombo A, Stefanadis C. Inflammation and restenosis after percutaneous coronary interventions. Eur Heart J. 2004;25(19):1679–87.

    Article  PubMed  CAS  Google Scholar 

  30. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  31. Drachman DE, Simon DI. Inflammation as a mechanism and therapeutic target for in-stent restenosis. Curr Atheroscler Rep. 2005;7(1):44–9.

    Article  PubMed  CAS  Google Scholar 

  32. Mickelson JK, Lakkis NM, Villarreal-Levy G, Hughes BJ, Smith CW. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? J Am Coll Cardiol. 1996;28(2):345–53.

    Article  PubMed  CAS  Google Scholar 

  33. Palabrica T, Lobb R, Furie BC, Aronovitz M, Benjamin C, Hsu YM, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature. 1992;359(6398):848–51.

    Article  PubMed  CAS  Google Scholar 

  34. Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR. Activated and unactivated platelet adhesion to monocytes and neutrophils. Blood. 1991;78(7):1760–9.

    PubMed  CAS  Google Scholar 

  35. Decano JL, Mattson PC, Aikawa M. Macrophages in vascular inflammation: origins and functions. Curr Atheroscler Rep. 2016;18(6):34.

    Article  PubMed  CAS  Google Scholar 

  36. Welt FG, Edelman ER, Simon DI, Rogers C. Neutrophil, not macrophage, infiltration precedes neointimal thickening in balloon-injured arteries. Arterioscler Thromb Vasc Biol. 2000;20(12):2553–8.

    Article  PubMed  CAS  Google Scholar 

  37. Kollum M, Kaiser S, Kinscherf R, Metz J, Kubler W, Hehrlein C. Apoptosis after stent implantation compared with balloon angioplasty in rabbits. Role of macrophages. Arterioscler Thromb Vasc Biol. 1997;17(11):2383–8.

    Article  PubMed  CAS  Google Scholar 

  38. Rogers C, Welt FG, Karnovsky MJ, Edelman ER. Monocyte recruitment and neointimal hyperplasia in rabbits. Coupled inhibitory effects of heparin. Arterioscler Thromb Vasc Biol. 1996;16(10):1312–8.

    Article  PubMed  CAS  Google Scholar 

  39. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.

    Article  PubMed  CAS  Google Scholar 

  40. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair. Circulation. 2010;121(22):2437–45.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell Immunol. 2014;289(1–2):135–9.

    Article  PubMed  CAS  Google Scholar 

  43. Moniuszko M, Bodzenta-Lukaszyk A, Kowal K, Lenczewska D, Dabrowska M. Enhanced frequencies of CD14++CD16+, but not CD14+CD16+, peripheral blood monocytes in severe asthmatic patients. Clin Immunol. 2009;130(3):338–46.

    Article  PubMed  CAS  Google Scholar 

  44. Sunderkotter C, Nikolic T, Dillon MJ, van Rooijen N, Stehling M, Drevets DA, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol. 2004;172(7):4410–7.

    Article  PubMed  Google Scholar 

  45. Yrlid U, Jenkins CD, MacPherson GG. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions. J Immunol. 2006;176(7):4155–62.

    Article  PubMed  CAS  Google Scholar 

  46. Grad E, Zolotarevsky K, Danenberg HD, Nordling-David MM, Gutman D, Golomb G. The role of monocyte subpopulations in vascular injury following partial and transient depletion. Drug Deliv Transl Res. 2017. https://doi.org/10.1007/s13346-017-0404-5.

  47. Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol. 2009;54(2):130–8.

    Article  PubMed  Google Scholar 

  48. Liu Y, Imanishi T, Ikejima H, Tsujioka H, Ozaki Y, Kuroi A, et al. Association between circulating monocyte subsets and in-stent restenosis after coronary stent implantation in patients with ST-elevation myocardial infarction. Circ J. 2010;74(12):2585–91.

    Article  PubMed  Google Scholar 

  49. Crane MJ, Daley JM, van Houtte O, Brancato SK, Henry WL, Albina JE. The monocyte to macrophage transition in the murine sterile wound. Plos One. 2014;Jan 22;9(1):e86660.

  50. Katsuki S, Matoba T, Nakashiro S, Sato K, Koga J, Nakano K, et al. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation. 2014;129(8):896–906.

    Article  PubMed  CAS  Google Scholar 

  51. Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol. 2012;52:481–503.

    Article  PubMed  CAS  Google Scholar 

  52. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.

    PubMed  CAS  Google Scholar 

  53. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.

    Article  PubMed  CAS  Google Scholar 

  54. Park K. Targeted vs. non-targeted delivery systems: reduced toxicity over efficacy. J Control Release. 2014;178:126.

    Article  PubMed  CAS  Google Scholar 

  55. Roth JC, Curiel DT, Pereboeva L. Cell vehicle targeting strategies. Gene Ther. 2008;15(10):716–29.

    Article  PubMed  CAS  Google Scholar 

  56. Gladue RP, Bright GM, Isaacson RE, Newborg MF. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989;33(3):277–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gray M, Botelho RJ. Phagocytosis: hungry. Hungry Cells Methods Mol Biol. 2017;1519:1–16.

    PubMed  CAS  Google Scholar 

  58. Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One. 2010;5(3).

  59. Epstein-Barash H, Gutman D, Markovsky E, Mishan-Eisenberg G, Koroukhov N, Szebeni J, et al. Physicochemical parameters affecting liposomal bisphosphonates bioactivity for restenosis therapy: internalization, cell inhibition, activation of cytokines and complement, and mechanism of cell death. J Control Release. 2010;146(2):182–95.

    Article  PubMed  CAS  Google Scholar 

  60. Moghimi SM, Hunter AC. Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Pharm Res. 2001;18(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  61. van Rooijen N, Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods. 1994;174(1–2):83–93.

    Article  PubMed  Google Scholar 

  62. Moghimi SM, Patel HM. Tissue specific opsonins for phagocytic-cells and their different affinity for cholesterol-rich liposomes. FEBS Lett. 1988;233(1):143–7.

    Article  PubMed  CAS  Google Scholar 

  63. Patel HM, Tuzel NS, Ryman BE. Inhibitory effect of cholesterol on the uptake of liposomes by liver and spleen. Biochim Biophys Acta. 1983;761(2):142–51.

    Article  PubMed  CAS  Google Scholar 

  64. Epstein H, Afergan E, Moise T, Richter Y, Rudich Y, Golomb G. Number-concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: empirical and calculation methods. Biomaterials. 2006;27(4):651–9.

    Article  PubMed  CAS  Google Scholar 

  65. Aizik G, Waiskopf N, Agbaria M, Levi-Kalisman Y, Banin U, Golomb G. Delivery of liposomal quantum dots via monocytes for imaging of inflamed tissue. ACS Nano. 2017;11(3):3038–51.

    Article  PubMed  CAS  Google Scholar 

  66. Matsui M, Shimizu Y, Kodera Y, Kondo E, Ikehara Y, Nakanishi H. Targeted delivery of oligomannose-coated liposome to the omental micrometastasis by peritoneal macrophages from patients with gastric cancer. Cancer Sci. 2010;101(7):1670–7.

    Article  PubMed  CAS  Google Scholar 

  67. Afergan E, Epstein H, Dahan R, Koroukhov N, Rohekar K, Danenberg HD, et al. Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. J Control Release. 2008;132(2):84–90.

    Article  PubMed  CAS  Google Scholar 

  68. Trivedi RA, Mallawarachi C, U-King-Im JM, Graves MJ, Horsley J, Goddard MJ, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol. 2006;26(7):1601–6.

    Article  PubMed  CAS  Google Scholar 

  69. Sigovan M, Boussel L, Sulaiman A, Sappey-Marinier D, Alsaid H, Desbleds-Mansard C, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology. 2009;252(2):401–9.

    Article  PubMed  Google Scholar 

  70. Harel-Adar T, Ben Mordechai T, Amsalem Y, Feinberg MS, Leor J, Cohen S. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci U S A. 2011;108(5):1827–32.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhu XF, Amir E, Singh G, Clemons M, Addison C. Bone-targeted therapy for metastatic breast cancer—where do we go from here? A commentary from the BONUS 8 meeting. J Bone Oncol. 2014;3(1):1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Koga J, Matoba T, Egashira K. Anti-inflammatory nanoparticle for prevention of atherosclerotic vascular diseases. J Atheroscler Thromb. 2016;23(7):757–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29(11):1005–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Afergan E, Ben David M, Epstein H, Koroukhov N, Gilhar D, Rohekar K, et al. Liposomal simvastatin attenuates neointimal hyperplasia in rats. AAPS J. 2010;12(2):181–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Danenberg HD, Golomb G, Groothuis A, Gao J, Epstein H, Swaminathan RV, et al. Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation. 2003;108(22):2798–804.

    Article  PubMed  CAS  Google Scholar 

  77. Danenberg HD, Fishbein I, Epstein H, Waltenberger J, Moerman E, Monkkonen J, et al. Systemic depletion of macrophages by liposomal bisphosphonates reduces neointimal formation following balloon-injury in the rat carotid artery. J Cardiovasc Pharmacol. 2003;42(5):671–9.

    Article  PubMed  CAS  Google Scholar 

  78. Cohen-Sela E, Rosenzweig O, Gao J, Epstein H, Gati I, Reich R, et al. Alendronate-loaded nanoparticles deplete monocytes and attenuate restenosis. J Control Release. 2006;113(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  79. Markovsky E, Koroukhov N, Golomb G. Additive-free albumin nanoparticles of alendronate for attenuating inflammation through monocyte inhibition. Nanomedicine. 2007;2(4):545–53.

    Article  PubMed  CAS  Google Scholar 

  80. Epstein H, Berger V, Levi I, Eisenberg G, Koroukhov N, Gao J, et al. Nanosuspensions of alendronate with gallium or gadolinium attenuate neointimal hyperplasia in rats. J Control Release. 2007;117(3):322–32.

    Article  PubMed  CAS  Google Scholar 

  81. Nakashiro S, Matoba T, Umezu R, Koga J, Tokutome M, Katsuki S, et al. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE(−/−) mice. Arterioscler Thromb Vasc Biol. 2016;36(3):491–500.

    Article  PubMed  CAS  Google Scholar 

  82. Liu T, van Rooijen N, Tracey DJ. Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain. 2000;86(1–2):25–32.

    Article  PubMed  CAS  Google Scholar 

  83. Hiraoka K, Zenmyo M, Watari K, Iguchi H, Fotovati A, Kimura YN, et al. Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Sci. 2008;99(8):1595–602.

    Article  PubMed  CAS  Google Scholar 

  84. Haber E, Danenberg HD, Koroukhov N, Ron-El R, Golomb G, Schachter M. Peritoneal macrophage depletion by liposomal bisphosphonate attenuates endometriosis in the rat model. Hum Reprod. 2009;24(2):398–407.

    Article  PubMed  CAS  Google Scholar 

  85. Calin MV, Manduteanu I, Dragomir E, Dragan E, Nicolae M, Gan AM, et al. Effect of depletion of monocytes/macrophages on early aortic valve lesion in experimental hyperlipidemia. Cell Tissue Res. 2009;336(2):237–48.

    Article  PubMed  CAS  Google Scholar 

  86. Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4(4):297–305.

    Article  PubMed  CAS  Google Scholar 

  87. Gao W, Langer R, Farokhzad OC. Poly(ethylene glycol) with observable shedding. Angew Chem Int Ed Engl. 2010;49(37):6567–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta. 1991;1070(1):187–92.

    Article  PubMed  CAS  Google Scholar 

  89. Kingsley JD, Dou HY, Morehead J, Rabinow B, Gendelman HE, Destache CJ. Nanotechnology: a focus on nanoparticles as a drug delivery system. J NeuroImmune Pharmacol. 2006;1(3):340–50.

    Article  PubMed  Google Scholar 

  90. Tirosh B, Khatib N, Barenholz Y, Nissan A, Rubinstein A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol Pharm. 2009;6(4):1083–91.

    Article  PubMed  CAS  Google Scholar 

  91. Schroeder A, Turjeman K, Schroeder JE, Leibergall M, Barenholz Y. Using liposomes to target infection and inflammation induced by foreign body injuries or medical implants. Expert Opin Drug Deliv. 2010;7(10):1175–89.

    Article  PubMed  CAS  Google Scholar 

  92. Barenholz Y, Bombelli C, Bonicelli MG, di Profio P, Giansanti L, Mancini G, et al. Influence of lipid composition on the thermotropic behavior and size distribution of mixed cationic liposomes. J Colloid Interface Sci. 2011;356(1):46–53.

    Article  PubMed  CAS  Google Scholar 

  93. Gabizon AA, Shmeeda H, Zalipsky S. Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res. 2006;16(3):175–83.

    Article  PubMed  CAS  Google Scholar 

  94. van Rooijen N, van Nieuwmegen R. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. An enzyme-histochemical study. Cell Tissue Res. 1984;238(2):355–8.

    Article  PubMed  Google Scholar 

  95. van Rooijen N. The liposome-mediated macrophage suicide technique. J Immunol Methods. 1989;124(1):1–6.

    Article  PubMed  Google Scholar 

  96. Rodan GA. Mechanisms of action of bisphosphonates. Annu Rev Pharmacol Toxicol. 1998;38:375–88.

    Article  PubMed  CAS  Google Scholar 

  97. Fleisch H. Development of bisphosphonates. Breast Cancer Res. 2002;4(1):30–4.

    Article  PubMed  CAS  Google Scholar 

  98. Rogers MJ, Crockett JC, Coxon FP, Monkkonen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(1):34–41.

    Article  PubMed  CAS  Google Scholar 

  99. Feldman LJ, Mazighi M, Scheuble A, Deux JF, De Benedetti E, Badier-Commander C, et al. Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit. Circulation. 2001;103(25):3117–22.

    Article  PubMed  CAS  Google Scholar 

  100. Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation. 2013;127(20):2038–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol. 2007;170(3):818–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Diez-Roux G, Lang RA. Macrophages induce apoptosis in normal cells in vivo. Development. 1997;124(18):3633–8.

    PubMed  CAS  Google Scholar 

  103. Leibovich SJ, Wiseman DM. Macrophages, wound repair and angiogenesis. Prog Clin Biol Res. 1988;266:131–45.

    PubMed  CAS  Google Scholar 

  104. Vandervelde S, van Amerongen MJ, Tio RA, Petersen AH, van Luyn MJ, Harmsen MC. Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovasc Pathol. 2006;15(2):83–90.

    Article  PubMed  Google Scholar 

  105. Minatoguchi S, Takemura G, Chen XH, Wang NY, Uno Y, Koda M, et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation. 2004;109(21):2572–80.

    Article  PubMed  CAS  Google Scholar 

  106. Danon D, Kowatch MA, Roth GS. Promotion of wound repair in old mice by local injection of macrophages. Proc Natl Acad Sci U S A. 1989;86(6):2018–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Doggrell SA. Statins in the 21st century: end of the simple story? Expert Opin Investig Drugs. 2001;10(9):1755–66.

    Article  PubMed  CAS  Google Scholar 

  108. Liao JK. Beyond lipid lowering: the role of statins in vascular protection. Int J Cardiol. 2002;86(1):5–18.

    Article  PubMed  Google Scholar 

  109. Horlitz M, Sigwart U, Niebauer J. Fighting restenosis after coronary angioplasty: contemporary and future treatment options. Int J Cardiol. 2002;83(3):199–205.

    Article  PubMed  Google Scholar 

  110. Indolfi C, Cioppa A, Stabile E, Di Lorenzo E, Esposito G, Pisani A, et al. Effects of hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin on smooth muscle cell proliferation in vitro and neointimal formation in vivo after vascular injury. J Am Coll Cardiol. 2000;35(1):214–21.

    Article  PubMed  CAS  Google Scholar 

  111. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002;105(25):3017–24.

    Article  PubMed  CAS  Google Scholar 

  112. Mulder HJ, Bal ET, Jukema JW, Zwinderman AH, Schalij MJ, van Boven AJ, et al. Pravastatin reduces restenosis two years after percutaneous transluminal coronary angioplasty (REGRESS trial). Am J Cardiol. 2000;86(7):742–6.

    Article  PubMed  CAS  Google Scholar 

  113. Bunch TJ, Muhlestein JB, Anderson JL, Horne BD, Bair TL, Jackson JD, et al. Effects of statins on six-month survival and clinical restenosis frequency after coronary stent deployment. Am J Cardiol. 2002;90(3):299–302.

    Article  PubMed  CAS  Google Scholar 

  114. Horlitz M, Sigwart U, Niebauer J. Statins do not prevent restenosis after coronary angioplasty: where to go from here? Herz. 2001;26(2):119–28.

    Article  PubMed  CAS  Google Scholar 

  115. Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 2009;203(2):325–30.

    Article  PubMed  CAS  Google Scholar 

  116. Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med. 2000;6(12):1399–402.

    Article  PubMed  CAS  Google Scholar 

  117. Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–87.

    Article  PubMed  CAS  Google Scholar 

  118. Fildes JE, Shaw SM, Mitsidou A, Rogacev K, Leonard CT, Williams SG, et al. HMG-CoA reductase inhibitors deplete circulating classical and non-classical monocytes following human heart transplantation. Transpl Immunol. 2008;19(2):152–7.

    Article  PubMed  CAS  Google Scholar 

  119. Elazar V, Adwan H, Bauerle T, Rohekar K, Golomb G, Berger MR. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis. Int J Cancer. 2010;126(7):1749–60.

    PubMed  CAS  Google Scholar 

  120. Cohen-Sela E, Teitlboim S, Chorny M, Koroukhov N, Danenberg HD, Gao J, et al. Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity. J Pharm Sci. 2009;98(4):1452–62.

    Article  PubMed  CAS  Google Scholar 

  121. Monkkonen J, Brown CS, Thompson TT, Heath TD. Liposome-mediated delivery of gallium to macrophage-like cells in-vitro—demonstration of a transferrin-independent route for intracellular delivery of metal-ions. Pharm Res. 1993;10(8):1130–5.

    Article  PubMed  CAS  Google Scholar 

  122. Ruttinger D, Vollmar B, Wanner GA, Messmer K. In vivo assessment of hepatic alterations following gadolinium chloride-induced Kupffer cell blockade. J Hepatol. 1996;25(6):960–7.

    Article  PubMed  CAS  Google Scholar 

  123. Mizgerd JP, Molina RM, Stearns RC, Brain JD, Warner AE. Gadolinium induces macrophage apoptosis. J Leukoc Biol. 1996;59(2):189–95.

    Article  PubMed  CAS  Google Scholar 

  124. Duan SZ, Usher MG, Mortensen RM. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res. 2008;102(3):283–94.

    Article  PubMed  CAS  Google Scholar 

  125. Erdmann E, Dormandy JA, Charbonnel B, Massi-Benedetti M, Moules IK, Skene AM. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) study. J Am Coll Cardiol. 2007;49(17):1772–80.

    Article  PubMed  CAS  Google Scholar 

  126. Banai S, Finkelstein A, Almagor Y, Assali A, Hasin Y, Rosenschein U, et al. Targeted anti-inflammatory systemic therapy for restenosis: the biorest liposomal alendronate with stenting study (BLAST)-a double blind, randomized clinical trial. Am Heart J. 2013;165(2):234–40. e1

    Article  PubMed  CAS  Google Scholar 

  127. ClinicalTrials.gov. Biorest liposomal alendronate administration for diabetic patients undergoing drug-eluting stent percutaneous coronary intervention (BLADE). 2015. https://clinicaltrials.gov/ct2/show/NCT02645799?titles=BLADE&draw=1&rank=1.

  128. ClicalTrials.gov. Administration of NK-104-NP to treat chronic critical limb ischemia. 2012. https://clinicaltrials.gov/ct2/show/NCT01456819?cond=Chronic+Critical+Limb+Ischemia&draw=1&rank=1.

  129. Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol. 2009;183(1):661–9.

    Article  PubMed  CAS  Google Scholar 

  130. Choi MR, Bardhan R, Stanton-Maxey KJ, Badve S, Nakshatri H, Stantz KM, et al. Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnol. 2012;3(1–6):47–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Burke B, Sumner S, Maitland N, Lewis CE. Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J Leukoc Biol. 2002;72(3):417–28.

    PubMed  CAS  Google Scholar 

  132. Fishbein I, Levy RJ, Inventors; Ex vivo-modified monocytes as local delivery vehicles to treat diseased arteries patent US WO2013071015 A1. 2013.

  133. Chokri M, Lallot C, Ebert M, Poindron P, Bartholeyns J. Biodistribution of indium-labeled macrophages in mice bearing solid tumors. Int J Immunother. 1990;6(2):79–84.

    Google Scholar 

  134. Audran R, Collet B, Moisan A, Toujas L. Fate of mouse macrophages radiolabelled with PKH-95 and injected intravenously. Nucl Med Biol. 1995;22(6):817–21.

    Article  PubMed  CAS  Google Scholar 

  135. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Waiskopf N, Shweky I, Lieberman I, Banin U, Soreq H. Quantum dot labeling of butyrylcholinesterase maintains substrate and inhibitor interactions and cell adherence features. ACS Chem Neurosci. 2011;2(3):141–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

GG is grateful to the Woll Sisters and Brothers Chair in Cardiovascular Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gershon Golomb.

Ethics declarations

Conflict of interests

EG and GA declare that they have no conflict of interest. GG has a financial stake in Biorest Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aizik, G., Grad, E. & Golomb, G. Monocyte-mediated drug delivery systems for the treatment of cardiovascular diseases. Drug Deliv. and Transl. Res. 8, 868–882 (2018). https://doi.org/10.1007/s13346-017-0431-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0431-2

Keywords

Navigation