Skip to main content
Log in

Nanomaterials-assisted thermally induced neuromodulation

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Neuromodulation, as a fast-growing technique in neuroscience, has been a great tool in investigation of the neural pathways and treatments for various neurological disorders. However, the limitations such as constricted penetration depth, low temporal resolution and low spatial resolution hindered the development and clinical application of this technique. Nanotechnology, which refers to the technology that deals with dimension under 100 nm, has greatly influenced the direction of scientific researches within recent years. With the recent advancements in nanotechnology, much attention is being given at applying nanomaterials to address the limitations of the current available techniques in the field of biomedical science including neuromodulation. This mini-review aims to introduce the current state-of-the-art stimuli-responsive nanomaterials used for assisting thermally induced neuromodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnson MD, Lim HH, Netoff TI, Connolly AT, Johnson N, Roy A, Holt A, Lim KO, Carey JR, Vitek JL, He B. Neuromodulation for brain disorders: challenges and opportunities. IEEE Trans Biomed Eng. 2013;60:610–24.

    Article  Google Scholar 

  2. Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian Z, Chen X, Lu A, Yang Z. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int J Mol Sci. 2019;20:381.

    Article  Google Scholar 

  3. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7:a020412–a020412.

    Article  Google Scholar 

  4. Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y, Volkmann J, Krauss JK. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15:148–60.

    Article  Google Scholar 

  5. Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21:174–87.

    Article  Google Scholar 

  6. Paviolo C, Stoddart PR. Gold nanoparticles for modulating neuronal behavior. Nanomaterials. 2017;7:1–14.

    Article  Google Scholar 

  7. Rizvi SMD, Hussain T, Ahmed ABF, Alshammari TM, Moin A, Ahmed MQ, Barreto GE, Kamal MA, Ashraf GM. Gold nanoparticles: a plausible tool to combat neurological bacterial infections in humans. Biomed Pharmacother. 2018;107:7–18.

    Article  Google Scholar 

  8. Raliya R, Saha D, Chadha TS, Raman B, Biswas P. Non-invasive aerosol delivery and transport of gold nanoparticles to the brain. Sci Rep. 2017;7:1–8.

    Article  Google Scholar 

  9. Paviolo C, Haycock JW, Cadusch PJ, McArthur SL, Stoddart PR. Laser exposure of gold nanorods can induce intracellular calcium transients. J Biophotonics. 2014;7:761–5.

    Article  Google Scholar 

  10. Eom K, Kim J, Choi JM, Kang T, Chang JW, Byun KM, Jun SB, Kim SJ. Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small. 2014;10:3853–7.

    Article  Google Scholar 

  11. Yoo S, Hong S, Choi Y, Park JH, Nam Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano. 2014;8:8040–9.

    Article  Google Scholar 

  12. Carvalho-de-Souza JL, Treger JS, Dang B, Kent SBH, Pepperberg DR, Bezanilla F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 2015;86:207–17.

    Article  Google Scholar 

  13. Lee JW, Jung H, Cho HH, Lee JH, Nam Y. Gold nanostar-mediated neural activity control using plasmonic photothermal effects. Biomaterials. 2018;153:59–69.

    Article  Google Scholar 

  14. Kim HW, Yang K, Jeong WJ, Choi SJ, Lee JS, Cho AN, Chang GE, Cheong E, Cho SW, Lim YB. Photoactivation of noncovalently assembled peptide ligands on carbon nanotubes enables the dynamic regulation of stem cell differentiation. ACS Appl Mater Interfaces. 2016;8:26470–81.

    Article  Google Scholar 

  15. Wallyn J, Anton N, Vandamme TF. Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications—A review. Pharmaceutics. 2019;11:1–29.

    Article  Google Scholar 

  16. Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun. 2017;8:1–19.

    Article  Google Scholar 

  17. Lyu Y, Xie C, Chechetka SA, Miyako E, Pu K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J Am Chem Soc. 2016;138:9049–52.

    Article  Google Scholar 

  18. Wu X, Jiang Y, Rommelfanger NJ, Yin R, Liu J. Through-scalp deep-brain stimulation in tether-free , naturally-behaving mice with widefield NIR-II illumination. bioRxiv. 2020; 1–35.

  19. Li B, Wang Y, Gao D, Ren S, Li L, Li N, An H, Zhu T, Yang Y, Zhang H, Xing C. Photothermal modulation of depression-related ion channel function through conjugated polymer nanoparticles. Adv Funct Mater. 2021;2010757:1–9.

    Google Scholar 

  20. Maiti D, Tong X, Mou X, Yang K. Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol. 2019;9:1–16.

    Article  Google Scholar 

  21. Miyako E, Russier J, Mauro M, Cebrian C, Yawo H, Ménard-Moyon C, Hutchison JA, Yudasaka M, Iijima S, De Cola L, Bianco A. Photofunctional nanomodulators for bioexcitation. Angew Chemie. 2014;126:13337–41.

    Article  Google Scholar 

  22. Paviolo C, Haycock JW, Yong J, Yu A, Stoddart PR, Mcarthur SL. Laser exposure of gold nanorods can increase neuronal cell outgrowth. Biotechnol Bioeng. 2013;110:2277–91.

    Article  Google Scholar 

  23. Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol. 2010;5:602–6.

    Article  Google Scholar 

  24. Dordick S, Friedman JM. Plasma glucose in mice. 2013; 336:604–608.

  25. Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. Wireless magnetothermal deep brain stimulation. Science. 2015;347:1477–80.

    Article  Google Scholar 

  26. Stanley SA, Kelly L, Latcha KN, Schmidt SF, Yu X, Nectow AR, Sauer J, Dordick JS, Friedman JM. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature. 2016;531:1–20.

    Article  Google Scholar 

  27. Munshi R, Qadri SM, Pralle A. Transient magnetothermal neuronal silencing using the chloride channel anoctamin 1 (TMEM16A). Front Neurosci. 2018;12:1–13.

    Article  Google Scholar 

  28. Munshi R, Qadri SM, Zhang Q, Rubio IC, del Pino P, Pralle A. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. Elife. 2017;6:1–26.

    Article  Google Scholar 

  29. Rao S, Chen R, LaRocca AA, Christiansen MG, Senko AW, Shi CH, Chiang PH, Varnavides G, Xue J, Zhou Y, Park S, Ding R, Moon J, Feng G, Anikeeva P. Remotely controlled chemomagnetic modulation of targeted neural circuits. Nat Nanotechnol. 2019;14:967–73.

    Article  Google Scholar 

  30. Rosenfeld D, Senko AW, Moon J, Yick I, Varnavides G, Gregureć D, Koehler F, Chiang PH, Christiansen MG, Maeng LY, Widge AS, Anikeeva P. Transgene-free remote magnetothermal regulation of adrenal hormones. Sci Adv. 2020;6:1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2020R1C1C1007589), Korea Medical Device Development Fund grant funded by the Korean government (Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, Ministry of Food and Drug Safety) (NTIS no. 9991006805), National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (2021M3H4A1A03048648/2021M3F3A2A01037365), the Smart Project Program through KAIST–Khalifa Joint Research Center (KK-JRC), KAIST College of Engineering Global Initiative Convergence Research Program, KI Meta Convergence Research Program, and KAIST Post-AI Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongjun Park.

Ethics declarations

Conflict of interest

Yang C declares that s/he has no conflict of interest in relation to the work in this article. Park S declares that s/he has no conflict of interest in relation to the work in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Park, S. Nanomaterials-assisted thermally induced neuromodulation. Biomed. Eng. Lett. 11, 163–170 (2021). https://doi.org/10.1007/s13534-021-00193-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-021-00193-w

Keywords

Navigation