Skip to main content

Advertisement

Log in

Lipocalin-2 inhibits pancreatic cancer stemness via the AKT/c-Jun pathway

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) are involved in cancer recurrence and metastasis owing to their self-renewal properties and drug-resistance capacity. Lipocalin-2 (Lcn2) of the lipocalin superfamily is highly expressed in pancreatic cancer. Nevertheless, reports on the involvement of Lcn2 in the regulation of pancreatic CSC properties are scant. This study is purposed to investigate whether Lcn2 plays a crucial role in CSC renewal and stemness maintenance in pancreatic carcinoma. Immunohistochemistry results of tumor tissue chips together with Gene Expression Omnibus sequencing files confirmed that Lcn2 is highly expressed in pancreatic carcinoma compared with that in normal tissues. The exogenous expression of Lcn2 attenuated CSC-associated SOX2, CD44, and EpCAM expression and suppressed sarcosphere formation and tumorigenesis in the pancreatic carcinoma cell line PANC-1, which showed low expression of Lcn2. However, Lcn2 knockout in BxPC-3 cell line, which presented high Lcn2 expression, promoted CSC stemness, further enhancing sarcosphere formation and tumorigenesis. Moreover, Lcn2 was found to regulate stemness in pancreatic cancer depending on the activation of AKT and c-Jun. Lcn2 suppresses stemness properties in pancreatic carcinoma by activating the AKT-c-Jun pathway, and thus, it may be a novel candidate to suppress the stemness of pancreatic cancer. This study provides a new insight into disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22:9694–705. https://doi.org/10.3748/wjg.v22.i44.9694.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20. https://doi.org/10.1016/S0140-6736(10)62307-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goral V. Pancreatic cancer: pathogenesis and diagnosis. Asian Pac J Cancer Prev. 2015;16:5619–24. https://doi.org/10.7314/apjcp.2015.16.14.5619.

    Article  PubMed  Google Scholar 

  4. Xiao X, Yeoh BS, Vijay-Kumar M. Lipocalin 2: an emerging player in iron homeostasis and inflammation. Annu Rev Nutr. 2017;37:103–30. https://doi.org/10.1146/annurev-nutr-071816-064559.

    Article  CAS  PubMed  Google Scholar 

  5. Flower DR. The lipocalin protein family: structure and function. Biochem J. 1996;318:1–14. https://doi.org/10.1042/bj3180001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu C, Yang K, Li M, Huang W, Zhang F, Wang H. Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther. 2018;11:8099–106. https://doi.org/10.2147/OTT.S181223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi H, Gu Y, Yang J, Xu L, Mi W, Yu W. Lipocalin 2 promotes lung metastasis of murine breast cancer cells. J Exp Clin Cancer Res. 2008;27:83. https://doi.org/10.1186/1756-9966-27-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tong Z, Kunnumakkara AB, Wang H, et al. Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res. 2008;68:6100–8. https://doi.org/10.1158/0008-5472.CAN-08-0540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44. https://doi.org/10.1158/0008-5472.CAN-06-3126.

    Article  CAS  PubMed  Google Scholar 

  10. Shibue T, Weinberg RA. EMT, CSCS, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29. https://doi.org/10.1038/nrclinonc.2017.44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ishii H, Iwatsuki M, Ieta K, et al. Cancer stem cells and chemoradiation resistance. Cancer Sci. 2008;99:1871–7. https://doi.org/10.1111/j.1349-7006.2008.00914.x.

    Article  CAS  PubMed  Google Scholar 

  12. Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells. 2015;7:1150–84. https://doi.org/10.4252/wjsc.v7.i9.1150.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7. https://doi.org/10.1158/0008-5472.CAN-06-2030.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004;23:7274–82. https://doi.org/10.1038/sj.onc.1207947.

    Article  CAS  PubMed  Google Scholar 

  15. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11. https://doi.org/10.1038/35102167.

    Article  CAS  PubMed  Google Scholar 

  16. Fang M, Li Y, Huang K, et al. IL33 promotes colon cancer cell stemness via JNK activation and macrophage recruitment. Cancer Res. 2017;77:2735–45. https://doi.org/10.1158/0008-5472.CAN-16-1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang P, Liu Y, Lian C, et al. SH3RF3 promotes breast cancer stem-like properties via JNK activation and PTX3 upregulation. Nat Commun. 2020;11:2487. https://doi.org/10.1038/s41467-020-16051-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo D, Xu X, Li J, et al. The PDK1/c-Jun pathway activated by TGF-β induces EMT and promotes proliferation and invasion in human glioblastoma. Int J Oncol. 2018;53:2067–80. https://doi.org/10.3892/ijo.2018.4525.

    Article  CAS  PubMed  Google Scholar 

  19. Thakur N, Hamidi A, Song J, et al. Smad7 enhances TGF-β-induced transcription of c-Jun and HDAC6 promoting invasion of prostate cancer cells. iScience. 2020. https://doi.org/10.1016/j.isci.2020.101470.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Verrecchia F, Tacheau C, Schorpp-Kistner M, Angel P, Mauviel A. Induction of the AP-1 members c-Jun and JunB by TGF-beta/Smad suppresses early Smad-driven gene activation. Oncogene. 2001;20:2205–11. https://doi.org/10.1038/sj.onc.1204347.

    Article  CAS  PubMed  Google Scholar 

  21. Hao P, Li H, Wu A, et al. Lipocalin2 promotes cell proliferation and migration in ovarian cancer through activation of the ERK/GSK3β/β-catenin signaling pathway. Life Sci. 2020. https://doi.org/10.1016/j.lfs.2020.118492.

    Article  PubMed  Google Scholar 

  22. Pb M, Jarjapu S, Nanchari SR, et al. LCN2 promoter methylation status as novel predictive marker for microvessel density and aggressive tumor phenotype in breast cancer patients. Asian Pac J Cancer Prev. 2015;16:4965–9. https://doi.org/10.7314/apjcp.2015.16.12.4965.

    Article  Google Scholar 

  23. Roli L, Pecoraro V, Trenti T. Can NGAL be employed as prognostic and diagnostic biomarker in human cancers? A systematic review of current evidence. Int J Biol Markers. 2017;32:e53–61. https://doi.org/10.5301/jbm.5000245.

    Article  CAS  PubMed  Google Scholar 

  24. Santiago-Sánchez GS, Pita-Grisanti V, Quiñones-Díaz B, Gumpper K, Cruz-Monserrate Z, Vivas-Mejía PE. Biological functions and therapeutic potential of lipocalin 2 in cancer. Int J Mol Sci. 2020;21:4365. https://doi.org/10.3390/ijms21124365.

    Article  CAS  PubMed Central  Google Scholar 

  25. Yang J, Moses MA. Lipocalin 2: a multifaceted modulator of human cancer. Cell Cycle. 2009;8:2347–52. https://doi.org/10.4161/cc.8.15.9224.

    Article  CAS  PubMed  Google Scholar 

  26. Yoon S, Lee EJ, Choi JH, et al. Recapitulation of pharmacogenomic data reveals that invalidation of SULF2 enhance sorafenib susceptibility in liver cancer. Oncogene. 2018;37:4443–54. https://doi.org/10.1038/s41388-018-0291-3.

    Article  CAS  PubMed  Google Scholar 

  27. Yang J, McNeish B, Butterfield C, Moses MA. Lipocalin 2 is a novel regulator of angiogenesis in human breast cancer. FASEB J. 2013;27:45–50. https://doi.org/10.1096/fj.12-211730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee HJ, Lee EK, Lee KJ, Hong SW, Yoon Y, Kim JS. Ectopic expression of neutrophil gelatinase-associated lipocalin suppresses the invasion and liver metastasis of colon cancer cells. Int J Cancer. 2006;118:2490–7. https://doi.org/10.1002/ijc.21657.

    Article  CAS  PubMed  Google Scholar 

  29. Lee EK, Kim HJ, Lee KJ, et al. Inhibition of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/Akt signaling. Int J Oncol. 2011;38:325–33. https://doi.org/10.3892/ijo.2010.854.

    Article  CAS  PubMed  Google Scholar 

  30. Wang YP, Yu GR, Lee MJ, et al. Lipocalin-2 negatively modulates the epithelial-to-mesenchymal transition in hepatocellular carcinoma through the epidermal growth factor (TGF-beta1)/Lcn2/Twist1 pathway. Hepatology. 2013;58:1349–61. https://doi.org/10.1002/hep.26467.

    Article  CAS  PubMed  Google Scholar 

  31. Liu R, Shen Y, Nan K, et al. Association between expression of cancer stem cell markers and poor differentiation of hepatocellular carcinoma. Medicine. 2015;94:1–9. https://doi.org/10.1097/MD.0000000000001306.

    Article  CAS  Google Scholar 

  32. Zhou P, Li B, Liu F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer. 2017;16:52. https://doi.org/10.1186/s12943-017-0624-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Salgia R, Kulkarni P. The genetic/non-genetic duality of drug “resistance” in cancer. Trends Cancer. 2018;4:110–8. https://doi.org/10.1016/j.trecan.2018.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo M, Brooks M, Wicha MS. Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr Pharm Des. 2015;21:1301–10. https://doi.org/10.2174/1381612821666141211120604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griffiths MR, Black EJ, Culbert AA, et al. Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex. Biochem J. 1998;335:19–26. https://doi.org/10.1042/bj3350019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie X, Kaoud TS, Edupuganti R, et al. C-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun. Oncogene. 2017;36:2599–608. https://doi.org/10.1038/onc.2016.417.

    Article  CAS  PubMed  Google Scholar 

  37. Nuntagowat C, Leelawat K, Tohtong R. NGAL knockdown by siRNA in human cholangiocarcinoma cells suppressed invasion by reducing NGAL/MMP-9 complex formation. Clin Exp Metastasis. 2010;27:295–305. https://doi.org/10.1007/s10585-010-9327-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Tianyu Dong (Research Center for Instrumental Analysis, Hebei Medical University) for her excellent technical assistance. This work was supported by Hebei Medical University, Natural Science Foundation of Hebei Province (H2020206524); Overseas Researcher Program in Hebei Provincial Department of Human Resources and Social Security (C20190352); National Natural Science Foundation of China (81602579); and “Chun yu” Fund of Hebei Medical University (CYYQ201901).

Funding

This work was supported by Hebei Medical University, Natural Science Foundation of Hebei Province (Grant number H2020206524); Overseas Researcher Program in Hebei Provincial Department of Human Resources and Social Security (Grant number C20190352); National Natural Science Foundation of China (Grant number 81602579); and “Chun yu” Fund of Hebei Medical University (Grant number CYYQ201901).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, and data collection and analysis were performed by SF, MJ, XX, SY, YW, QR. The first draft of the manuscript was written by PH, JZ, FY, HC. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fengming Yue or Huixian Cui.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

The experiments in this article was approved by the Laboratory Animal Ethical and Welfare Committee of Hebei Medical University (IACUC-Hebmu-2022008).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, P., Zhang, J., Fang, S. et al. Lipocalin-2 inhibits pancreatic cancer stemness via the AKT/c-Jun pathway. Human Cell 35, 1475–1486 (2022). https://doi.org/10.1007/s13577-022-00735-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00735-z

Keywords

Navigation