Skip to main content
Log in

Smartphone Assisted Fundus Fundoscopy/Photography

  • Retina (J Fortun, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

With the introduction of portable fundus photography, the possibility of providing adequate eye care and reducing its cost globally became attainable. Smartphone photography currently plays a vital role in outreach programs where there is a lack of providers and limited availability of traditional fundus cameras.

Recent Findings

Smartphones are an attractive option in portable ophthalmoscopy due to their widespread availability. Newer techniques have allowed the acquisition of high-quality images that compare to images obtained with the more expensive conventional fundus cameras. Available options include slit lamp attachments, adapters for direct ophthalmoscopy, and the use of smartphones with handheld or mounted lenses as an indirect ophthalmoscope.

Summary

Telemedicine has a substantial ability to reach underserved populations without compromising the quality of care. The continuous improvement in smartphone technology establishes its integral role in tele-ophthalmology. Further validation studies are needed to prove its advantages and shape its implementation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Chan JB, Ho HC, Hussein NFE. DIY—smartphone slit-lamp adaptor. Journal MTM. 2014;3(1):16–22. https://doi.org/10.7309/jmtm.3.1.4.

    Article  Google Scholar 

  2. EyeWiki. Smart phoneography—how to take slit lamp photographs with an iPhone. Available at: http://eyewiki.aao.org/Smart_Phoneography_How_to_ take_slit_lamp_photographs_with_an_iPhone. Last Accessed 1 Oct 2017.

  3. Barsam A, Bhogal M, Morris S, Little B. Anterior segment slitlamp photography using the iPhone. J Cataract Refract Surg. 2010;36(7):1240–1. https://doi.org/10.1016/j.jcrs.2010.04.001.

    Article  PubMed  Google Scholar 

  4. Lee WW. Slit lamp adapters turn smartphones into clinical cameras. Ophthalmology Web. Available at: http://www.ophthalmologyweb.com/Featured- Articles/136817-Slit-Lamp-Adapters-turn-Smartphones-into-Clinical-Cameras/. Last Accessed 1 Oct 2017.

  5. Gurram MM. Ophthalmic cell-phone imaging system: a costless imaging system. Can J Ophthalmol. 2013;48(5):135–9. https://doi.org/10.1016/j.jcjo.2013.06.007.

    Article  Google Scholar 

  6. WelchAllyn. iExaminer eye imaging for your iPhone. Available at: http://www.welchallyn.com/en/microsites/iexaminer.html. Last Accessed 1 Oct 2017.

  7. Russo A, Civili PS. A novel device to exploit the smartphone camera for fundus photography. J Ophthalmology. 2015;2015:1–5. https://doi.org/10.1155/2015/823139.

    Article  Google Scholar 

  8. Russo A, Morescalchi F, Costagliola C, Delcassi L, Semeraro F. Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading diabetic retinopathy. Am J Ophthalmol. 2015;159(2):360–4. https://doi.org/10.1016/j.ajo.2014.11.008.

    Article  PubMed  Google Scholar 

  9. Navitsky C. The portable eye examination kit. Retina Today. 2013. Available at http://retinatoday.com/2013/12/the-portable-eye-examination-kit. Last Accessed 20 Sept 2017.

  10. Bastawrous A, Mathenge W, Peto T, Weiss HA, Rono H, Foster A, et al. The Nakuru eye disease cohort study: methodology & rationale. BMC Ophthalmol. 2014;14(1):60. https://doi.org/10.1186/1471-2415-14-60.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bastawrous A, Giardini ME, Bolster NM, Peto T, Shah N, Livingstone IA, et al. Clinical validation of a smartphone-based adapter for optic disc imaging in Kenya. JAMA Ophthalmol. 2016;134(2):151–8. https://doi.org/10.1001/jamaophthalmol.2015.4625.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maamari R, Keenan J, Fletcher D, Margolis T. A mobile phone-based retinal camera for portable wide field imaging. Br J Ophthalmol. 2014;98(4):438–41. https://doi.org/10.1136/bjophthalmol-2013-303797.

    Article  PubMed  Google Scholar 

  13. Solanki K, Ramachandra C, Bhat S, Bhaskaranand M, Nittala MG, et al. EyeArt. Automated, high-throughput, image analysis for diabetic retinopathy screening. Invest Ophthalmol Vis Sci. 2015;56:1429.

    Google Scholar 

  14. Rajalakshmi R, Arulmalar S, Usha M, Prathiba V, Kareemuddin KS, Anjana RM, et al. Validation of smartphone based retinal photography for diabetic retinopathy screening. PLoS One. 2015;10(9):e0138285. https://doi.org/10.1371/journal.pone.0138285.

    Article  PubMed  PubMed Central  Google Scholar 

  15. • Lord RK, Shah VA, San-Filippo AN, Krishna R. Novel uses of smartphones in ophthalmology. Ophthalmology. 2010;117(6):1274–1274.e3. https://doi.org/10.1016/j.ophtha.2010.01.001. This letter was the first to report about the various use of smartphones as an educational tool in ophthalmology as well as its ability to capture images of the eye that can be shared digitally.

    Article  PubMed  Google Scholar 

  16. • Bastawrous A. Smartphone fundoscopy. Ophthalmology. 2012;119(2):433–433.e2. https://doi.org/10.1016/j.ophtha.2011.11.014. This article was the first to describe using the camera’s flash as a coaxial light source and the smartphone as an indirect ophthalmoscope to capture retinal images.

    Article  Google Scholar 

  17. Ryan ME, Rajalakshmi R, Prathiba V, Anjana RM, Ranjani H, Narayan KMV, et al. Comparison Among Methods of Retinopathy Assessment (CAMRA) study: smartphone, nonmydriatic, and mydriatic photography. Ophthalmology. 2015;122(10):2038–43. https://doi.org/10.1016/j.ophtha.2015.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim DY, Delori F, Mukai S. Smartphone photography safety. Ophthalmology. 2012;119(10):2200–1. https://doi.org/10.1016/j.ophtha.2012.05.005.

    Article  PubMed  Google Scholar 

  19. Haddock LJ, Kim DY, Muka S. Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes. J Ophthalmol. 2013;2013:518479–5. https://doi.org/10.1155/2013/518479.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Myung D, Jais A, He L, Blumenkranz MS, Chang RT. 3D printed smartphone indirect lens adapter for rapid, high quality retinal imaging. J Mobile Tech Med. 2014;3(1):9–15. https://doi.org/10.7309/jmtm.3.1.3.

    Article  Google Scholar 

  21. Hong SC. 3D printable retinal imaging adapter for smartphones could go global. Graefes Arch Clin Exp Ophthalmol. 2015;253(10):1831–3. https://doi.org/10.1007/s00417-015-3017-z.

    Article  PubMed  Google Scholar 

  22. Volk iNview fundus imaging: Available at: https://volk.com/index.php/volk-products/ophthalmic-cameras/volk-inview/inview.html. Last Accessed 20 Oct 2017.

  23. Ludwig CA, Murthy SI, Pappuru RR, Jais A, Myung DJ, Chang RT. A novel smartphone ophthalmic imaging adapter: user feasibility studies in Hyderabad, India. Indian J Ophthalmol. 2016;64(3):191–200. https://doi.org/10.4103/0301-4738.181742.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Toy BC, Myung DJ, He L, Pan CK, Chang RT, Polkinhorne A, et al. Smartphone-based dilated fundus photography and near visual acuity testing as inexpensive screening tools to detect referral warranted diabetic eye disease. Retina. 2016;36(5):1000–8. https://doi.org/10.1097/IAE.0000000000000955.

    Article  PubMed  Google Scholar 

  25. Sharma A, Subramaniam SD, Ramachandran KI, Lakshmikanthan C, Krishna S, Sundaramoorthy SK. Smartphone-based fundus camera device (MII Ret Cam) and technique with ability to image peripheral retina. Eur J Ophthalmol. 2016;26(2):142–4. https://doi.org/10.5301/ejo.5000663.

    Article  CAS  PubMed  Google Scholar 

  26. Suto S, Hiraoka T, Oshika T. Fluorescein fundus angiography with smartphone. Retina. 2014;34(1):203–5. https://doi.org/10.1097/IAE.0000000000000041.

    Article  PubMed  Google Scholar 

  27. Wang A, Avallone J, Guyton DL. Head mounted digital camera for indirect ophthalmoscopy. Invest Ophthalmol Vis Sci. 2014;55:1606.

    Google Scholar 

  28. Welch RJ, Nguyen QD. A novel approach to ophthalmic photography using a portable and versatile camera device. Invest Ophthalmol Vis Sci. 2015;56:4102.

    Google Scholar 

  29. Hansen MB, Abràmoff MD, Folk JC, Mathenge W, Bastawrous A, Peto T. Results of automated retinal image analysis for detection of diabetic retinopathy from the Nakuru study. Kenya PLoS One. 2015;10(10):e0139148. https://doi.org/10.1371/journal.pone.0139148.

    Article  PubMed  Google Scholar 

  30. Maker MP, Noble J, Silva PS, Cavallerano JD, Murtha TJ, Sun JK, et al. Automated Retinal Imaging System (ARIS) compared with ETDRS protocol color stereoscopic retinal photography to assess level of diabetic retinopathy. Diabetes Technol Ther. 2012;14(6):515–22. https://doi.org/10.1089/dia.2011.0270.

    Article  PubMed  Google Scholar 

  31. Tran K, Yates PA. Constructing a non-mydriatic point and shoot fundus camera for retinal screening. Invest Ophthalmol Vis Sci. 2012;53:3105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. Haddock MD.

Ethics declarations

Conflict of Interest

Anita Barikian and Luis Haddock declare that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Retina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barikian, A., Haddock, L.J. Smartphone Assisted Fundus Fundoscopy/Photography. Curr Ophthalmol Rep 6, 46–52 (2018). https://doi.org/10.1007/s40135-018-0162-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-018-0162-7

Keywords

Navigation