Skip to main content

Advertisement

Log in

LC–MS Challenges in Characterizing and Quantifying Monoclonal Antibodies (mAb) and Antibody-Drug Conjugates (ADC) in Biological Samples

  • Molecular Drug Disposition (H Sun, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Monoclonal antibody (mAb) represents majority of protein therapeutics with more than 50 antibodies and 3 antibody-drug conjugates (ADCs) on the market to treat cancers and other diseases. Liquid chromatography mass spectrometry (LC–MS) provides a common tool and has been routinely used to characterize and quantify mAb and ADCs and their catabolites in discovery as well as development of antibody-related therapeutics. The major challenges for LC–MS-based analysis of mAb include limited sensitivity and lack of understanding of the nature of biotransformation and its impact on quantitation data. The analytical challenges associated with ADCs are around characterizing and quantifying the dynamically changing mixture of ADC species in circulation due to catabolism of the antibody, linker, or payload. Tissue collection and analysis, although is practically limited in the clinical research, offers direct assessment of the responsible molecular species at the site of action for the efficacy and toxicity. This review attempts to discuss LC–MS-based analytical challenges and opportunities in discovery and development of mAb and ADC therapeutics. Potential applications of the LC–MS analytical data in relation to the efficacy and toxicity of these molecular entities are also discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ab:

Antibody

ADC:

Antibody-drug conjugate

ADA:

Anti-drug antibody

ADME:

Absorption, distribution, metabolism, and excretion

AUC:

Area under amount or concentration versus time curve

CBI:

Cyclopropabenzindolone

CDR:

Complementary determining region

DAR:

Drug-to-antibody ratio

ELISA:

Enzyme-linked immunosorbent assay

Fab:

Antigen binding fragment of an antibody

Fc:

Crystalizable fragment of an antibody

HC:

Heavy chain of an antibody

HRMS:

High-resolution mass spectrometry

TOF:

Time-of-flight

IS:

Internal standard

IV:

Intravenous dosing

LBA:

Ligand binding assay

LC–MS:

Liquid chromatography mass spectrometry

LC:

Light chain of an antibody

mAb:

Monoclonal antibody

MMAE:

Monomethyl auristatin E

MRM:

Multiple reaction monitoring

PBD:

Pyrrolo[2,1-c][1,4]benzodiazepine-dimer

PK:

Pharmacokinetics

PD:

Pharmacodynamics

QC:

Quality control

SIL:

Stable isotope label

Total Ab:

Total antibody

TK:

Toxicokinetics

References

  1. Beck A, Sanglier-Cianférani S, van Dorsselaer A. Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal Chem. 2012;84(11):4637–46. https://doi.org/10.1021/ac3002885.

    Article  CAS  PubMed  Google Scholar 

  2. Vidarsson G, et al. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang YM, et al. Immunogenicity and PK/PD evaluation in biotherapeutic drug development: scientific considerations for bioanalytical methods and data analysis. Bioanalysis. 2014;6(1):79–87. https://doi.org/10.4155/bio.13.302.

    Article  PubMed  Google Scholar 

  4. Nelson AL. Antibody fragments: hope and hype. MAbs. 2010;2(1):77–83. https://doi.org/10.4161/mabs.2.1.10786.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20(7):838–47. https://doi.org/10.1016/j.drudis.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  6. Spiess C, et al. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol. 2015;67(2 Pt A):95–106.

    Article  CAS  PubMed  Google Scholar 

  7. Kontermann RE. Half-life extended biotherapeutics. Expert Opin Biol Ther. 2016;16(7):903–15. https://doi.org/10.1517/14712598.2016.1165661.

    Article  CAS  PubMed  Google Scholar 

  8. Wu B, Sun YN. Pharmacokinetics of peptide-Fc fusion proteins. J Pharm Sci. 2014;103(1):53–64. https://doi.org/10.1002/jps.23783.

    Article  CAS  PubMed  Google Scholar 

  9. Lee JW. ADME of monoclonal antibody biotherapeutics: knowledge gaps and emerging tools. Bioanalysis. 2013;5(16):2003–14. https://doi.org/10.4155/bio.13.144.

    Article  CAS  PubMed  Google Scholar 

  10. Tibbitts J, Canter D, Graff R, Smith A, Khawli LA. Key factors influencing ADME properties of therapeutic proteins: a need for ADME characterization in drug discovery and development. MAbs. 2016;8(2):229–45. https://doi.org/10.1080/19420862.2015.1115937.

    Article  CAS  PubMed  Google Scholar 

  11. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68. https://doi.org/10.1002/jps.20178.

    Article  CAS  PubMed  Google Scholar 

  12. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25. https://doi.org/10.1038/nri2155.

    Article  CAS  PubMed  Google Scholar 

  13. Ezan E, Becher F, Fenaille F. Assessment of the metabolism of therapeutic proteins and antibodies. Expert Opin Drug Metab Toxicol. 2014;10(8):1079–91. https://doi.org/10.1517/17425255.2014.925878.

    Article  CAS  PubMed  Google Scholar 

  14. Hall MP. Biotransformation and in vivo stability of protein biotherapeutics: impact on candidate selection and pharmacokinetic profiling. Drug Metab Dispos. 2014;42(11):1873–80. https://doi.org/10.1124/dmd.114.058347.

    Article  PubMed  Google Scholar 

  15. Zhang D, Pillow TH, Ma Y, Cruz-Chuh J, Kozak KR, Sadowsky JD, et al. Linker immolation determines cell killing activity of disulfide-linked pyrrolobenzodiazepine antibody-drug conjugates. ACS Med Chem Lett. 2016;7(11):988–93. https://doi.org/10.1021/acsmedchemlett.6b00233.

  16. Ouellette D, Chumsae C, Clabbers A, Radziejewski C, Correia I. Comparison of the in vitro and in vivo stability of a succinimide intermediate observed on a therapeutic IgG1 molecule. MAbs. 2013;5(3):432–44. https://doi.org/10.4161/mabs.24458.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yin S, Pastuskovas CV, Khawli LA, Stults JT. Characterization of therapeutic monoclonal antibodies reveals differences between in vitro and in vivo time-course studies. Pharm Res. 2013;30(1):167–78. https://doi.org/10.1007/s11095-012-0860-z.

    Article  CAS  PubMed  Google Scholar 

  18. Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell 2017.

  19. Chari RV, et al. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl. 2014;53(15):3796–827. https://doi.org/10.1002/anie.201307628.

    Article  CAS  PubMed  Google Scholar 

  20. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003;21(7):778–84. https://doi.org/10.1038/nbt832.

  21. LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res. 2011;17(20):6437–47. https://doi.org/10.1158/1078-0432.CCR-11-0762.

    Article  CAS  PubMed  Google Scholar 

  22. Sliwkowski MX, Mellman I. Antibody therapeutics in cancer. Science. 2013;341(6151):1192–8. https://doi.org/10.1126/science.1241145.

    Article  CAS  PubMed  Google Scholar 

  23. Shor B, et al. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Mol Immunol. 2015;67(2 Pt A):107–16.

    Article  CAS  PubMed  Google Scholar 

  24. Ricart AD. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res. 2011;17(20):6417–27. https://doi.org/10.1158/1078-0432.CCR-11-0486.

    Article  CAS  PubMed  Google Scholar 

  25. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37. https://doi.org/10.1038/nrd.2016.268.

    Article  CAS  PubMed  Google Scholar 

  26. Sochaj AM, Świderska KW, Otlewski J. Current methods for the synthesis of homogeneous antibody-drug conjugates. Biotechnol Adv. 2015;33(6 Pt 1):775–84. https://doi.org/10.1016/j.biotechadv.2015.05.001.

    Article  CAS  PubMed  Google Scholar 

  27. Jain N, Smith SW, Ghone S, Tomczuk B. Current ADC linker chemistry. Pharm Res. 2015;32(11):3526–40. https://doi.org/10.1007/s11095-015-1657-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today. 2014;19(7):869–81. https://doi.org/10.1016/j.drudis.2013.11.004.

  29. Panowksi S, et al. Site-specific antibody drug conjugates for cancer therapy. mAbs. 2014;6(1):34–45.

    Article  Google Scholar 

  30. Bouchard H, Viskov C, Garcia-Echeverria C. Antibody-drug conjugates—a new wave of cancer drugs. Bioorg Med Chem Lett. 2014;24(23):5357–63. https://doi.org/10.1016/j.bmcl.2014.10.021.

    Article  CAS  PubMed  Google Scholar 

  31. Beck A, Reichert JM. Antibody-drug conjugates: present and future. MAbs. 2014;6(1):15–7. https://doi.org/10.4161/mabs.27436.

    Article  PubMed  Google Scholar 

  32. Jackson DY. Processes for constructing homogeneous antibody drug conjugates. Org Process Res Dev. 2016;20(5):852–66. https://doi.org/10.1021/acs.oprd.6b00067.

    Article  CAS  Google Scholar 

  33. Akkapeddi P, Azizi SA, Freedy AM, Cal PMSD, Gois PMP, Bernardes GJL. Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry. Chem Sci. 2016;7(5):2954–63. https://doi.org/10.1039/C6SC00170J.

    Article  CAS  Google Scholar 

  34. Junutula JR, Bhakta S, Raab H, Ervin KE, Eigenbrot C, Vandlen R, et al. Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J Immunol Methods. 2008;332(1–2):41–52. https://doi.org/10.1016/j.jim.2007.12.011.

  35. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–32. https://doi.org/10.1038/nbt.1480.

  36. Hofer T, Skeffington LR, Chapman CM, Rader C. Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry. 2009;48(50):12047–57. https://doi.org/10.1021/bi901744t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A. 2012;109(40):16101–6. https://doi.org/10.1073/pnas.1211023109.

  38. Boeggeman E, Ramakrishnan B, Pasek M, Manzoni M, Puri A, Loomis KH, et al. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem. 2009;20(6):1228–36. https://doi.org/10.1021/bc900103p.

  39. Jeger S, Zimmermann K, Blanc A, Grünberg J, Honer M, Hunziker P, et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed Engl. 2010;49(51):9995–7. https://doi.org/10.1002/anie.201004243.

  40. Anami Y, Xiong W, Gui X, Deng M, Zhang CC, Zhang N, et al. Enzymatic conjugation using branched linkers for constructing homogeneous antibody-drug conjugates with high potency. Org Biomol Chem. 2017;15(26):5635–42. https://doi.org/10.1039/C7OB01027C.

  41. Flygare JA, Pillow TH, Aristoff P. Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des. 2013;81(1):113–21. https://doi.org/10.1111/cbdd.12085.

    Article  CAS  PubMed  Google Scholar 

  42. Tumey LN, Charati M, He T, Sousa E, Ma D, Han X, et al. Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy. Bioconjug Chem. 2014;25(10):1871–80. https://doi.org/10.1021/bc500357n.

  43. Cohen R, Vugts DJ, Visser GWM, Stigter-van Walsum M, Bolijn M, Spiga M, et al. Development of novel ADCs: conjugation of tubulysin analogues to trastuzumab monitored by dual radiolabeling. Cancer Res. 2014;74(20):5700–10. https://doi.org/10.1158/0008-5472.CAN-14-1141.

  44. Leverett CA, Sukuru SCK, Vetelino BC, Musto S, Parris K, Pandit J, et al. Design, synthesis, and cytotoxic evaluation of novel tubulysin analogues as ADC payloads. ACS Med Chem Lett. 2016;7(11):999–1004. https://doi.org/10.1021/acsmedchemlett.6b00274.

  45. Verma VA, Pillow TH, DePalatis L, Li G, Phillips GL, Polson AG, et al. The cryptophycins as potent payloads for antibody drug conjugates. Bioorg Med Chem Lett. 2015;25(4):864–8. https://doi.org/10.1016/j.bmcl.2014.12.070.

  46. Moldenhauer G, Salnikov AV, Lüttgau S, Herr I, Anderl J, Faulstich H. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst. 2012;104(8):622–34. https://doi.org/10.1093/jnci/djs140.

    Article  CAS  PubMed  Google Scholar 

  47. Puthenveetil S, Loganzo F, He H, Dirico K, Green M, Teske J, et al. Natural product splicing inhibitors: a new class of antibody-drug conjugate (ADC) payloads. Bioconjug Chem. 2016;27(8):1880–8. https://doi.org/10.1021/acs.bioconjchem.6b00291.

  48. Hartley JA. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin Investig Drugs. 2011;20(6):733–44. https://doi.org/10.1517/13543784.2011.573477.

    Article  CAS  PubMed  Google Scholar 

  49. Jeffrey SC, Burke PJ, Lyon RP, Meyer DW, Sussman D, Anderson M, et al. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem. 2013;24(7):1256–63. https://doi.org/10.1021/bc400217g.

  50. Kung Sutherland MS, Walter RB, Jeffrey SC, Burke PJ, Yu C, Kostner H, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–63. https://doi.org/10.1182/blood-2013-03-491506.

  51. Flynn M, et al. ADCT-301, a pyrrolobenzodiazepine (PBD) dimer-containing antibody drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol Cancer Ther. 2016;15(11):2709–21. https://doi.org/10.1158/1535-7163.MCT-16-0233.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang D, Yu SF, Ma Y, Xu K, Dragovich PS, Pillow TH, et al. Chemical structure and concentration of intratumor catabolites determine efficacy of antibody drug conjugates. Drug Metab Dispos. 2016;44(9):1517–23. https://doi.org/10.1124/dmd.116.070631.

  53. Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chem Int Ed Engl. 2017;56(2):462–88. https://doi.org/10.1002/anie.201510610.

    Article  CAS  PubMed  Google Scholar 

  54. Pillow TH, Schutten M, Yu SF, Ohri R, Sadowsky J, Poon KA, et al. Modulating therapeutic activity and toxicity of pyrrolobenzodiazepine antibody-drug conjugates with self-immolative disulfide linkers. Mol Cancer Ther. 2017;16(5):871–8. https://doi.org/10.1158/1535-7163.MCT-16-0641.

  55. Junttila MR, et al. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med. 2015;7(314):314ra186.

  56. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229. https://doi.org/10.1124/pr.56.2.6.

    Article  CAS  PubMed  Google Scholar 

  57. Yu SF, Zheng B, Go M, Lau J, Spencer S, Raab H, et al. A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res. 2015;21(14):3298–306. https://doi.org/10.1158/1078-0432.CCR-14-2035.

  58. John A. Flygare THP, Brian Safina, Visha VERMA, Binqing Wei, William Denny, Anna GIDDENS, Ho Lee, Guo-Liang Lu, Christian Miller, Gordon Rewcastle, Moana Tercel, Muriel Bonnet, 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment 2015, WO 2015023355 A1.

  59. Kaur S, Xu K, Saad OM, Dere RC, Carrasco-Triguero M. Bioanalytical assay strategies for the development of antibody-drug conjugate biotherapeutics. Bioanalysis. 2013;5(2):201–26. https://doi.org/10.4155/bio.12.299.

    Article  CAS  PubMed  Google Scholar 

  60. Tumey LN, Rago B, Han X. In vivo biotransformations of antibody-drug conjugates. Bioanalysis. 2015;7(13):1649–64. https://doi.org/10.4155/bio.15.84.

    Article  CAS  PubMed  Google Scholar 

  61. Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem. 2008;19(3):759–65. https://doi.org/10.1021/bc7004329.

  62. Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol. 2012;30(2):184–9. https://doi.org/10.1038/nbt.2108.

  63. Jackson D, Atkinson J, Guevara CI, Zhang C, Kery V, Moon SJ, et al. In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates. PLoS One. 2014;9(1):e83865. https://doi.org/10.1371/journal.pone.0083865.

  64. Hengel SM, Sanderson R, Valliere-Douglass J, Nicholas N, Leiske C, Alley SC. Measurement of in vivo drug load distribution of cysteine-linked antibody-drug conjugates using microscale liquid chromatography mass spectrometry. Anal Chem. 2014;86(7):3420–5. https://doi.org/10.1021/ac403860c.

    Article  CAS  PubMed  Google Scholar 

  65. Kellogg BA, Garrett L, Kovtun Y, Lai KC, Leece B, Miller M, et al. Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug Chem. 2011;22(4):717–27. https://doi.org/10.1021/bc100480a.

  66. Thomas H. Pillow, Donglu Zhang, Shang-Fan Yu, Geoffrey Del Rosario, Keyang Xu, Jintang He, Sunil Bhakta, Rachana Ohri, Katherine R. Kozak, Edward Ha, Jagath R. Junutula and John A. Flygare. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem Sci. 2016.

  67. Tumey LN, Leverett CA, Vetelino B, Li F, Rago B, Han X, et al. Optimization of tubulysin antibody–drug conjugates: a case study in addressing ADC metabolism. ACS Med Chem Lett. 2016;7(11):977–82. https://doi.org/10.1021/acsmedchemlett.6b00195.

  68. Bouchard H, New cryptophycins as promising payloads for ADC, in 7th World ADC, San Diego 2016.

  69. Brun M-P, et al. Abstract LB-053: Towards new cryptophycins as promising payloads for ADC. Cancer Res. 2016;76(14 Supplement):LB-053-LB-53.

  70. Gorovits B, Alley SC, Bilic S, Booth B, Kaur S, Oldfield P, et al. Bioanalysis of antibody-drug conjugates: American Association of Pharmaceutical Scientists Antibody-Drug Conjugate Working Group position paper. Bioanalysis. 2013;5(9):997–1006. https://doi.org/10.4155/bio.13.38.

  71. Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, et al. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics. 2016;13(2):157–83. https://doi.org/10.1586/14789450.2016.1132167.

  72. Jian W, Kang L, Burton L, Weng N. A workflow for absolute quantitation of large therapeutic proteins in biological samples at intact level using LC-HRMS. Bioanalysis. 2016;8(16):1679–91. https://doi.org/10.4155/bio-2016-0096.

    Article  CAS  PubMed  Google Scholar 

  73. Grafmuller L, Wei C, Ramanathan R, Barletta F, Steenwyk R, Tweed J. Unconjugated payload quantification and DAR characterization of antibody-drug conjugates using high-resolution MS. Bioanalysis. 2016;8(16):1663–78. https://doi.org/10.4155/bio-2016-0120.

    Article  CAS  PubMed  Google Scholar 

  74. DeSilva B, Smith W, Weiner R, Kelley M, Smolec JM, Lee B, et al. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res. 2003;20(11):1885–900. https://doi.org/10.1023/B:PHAM.0000003390.51761.3d.

  75. Jenkins R, Duggan JX, Aubry AF, Zeng J, Lee JW, Cojocaru L, et al. Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics. AAPS J. 2015;17(1):1–16. https://doi.org/10.1208/s12248-014-9685-5.

  76. Ackermann BL. Immunoaffinity MS: adding increased value through hybrid methods. Bioanalysis. 2016;8(15):1535–7. https://doi.org/10.4155/bio-2016-0162.

    Article  CAS  PubMed  Google Scholar 

  77. Ramagiri S and Moore I, Hybridizing LBA with LC–MS/MS: the new norm for biologics quantification, Future Sci. 2016.

  78. Jones BR, Schultz GA. Adaptation of hybrid immunoaffinity LC-MS methods for protein bioanalysis in a contract research organization. Bioanalysis. 2016;8(15):1545–9. https://doi.org/10.4155/bio-2016-0104.

    Article  CAS  PubMed  Google Scholar 

  79. van den Broek I, Niessen WMA, van Dongen WD. Bioanalytical LC-MS/MS of protein-based biopharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;929:161–79. https://doi.org/10.1016/j.jchromb.2013.04.030.

    Article  PubMed  Google Scholar 

  80. Burris HA 3rd, et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011;29(4):398–405. https://doi.org/10.1200/JCO.2010.29.5865.

    Article  CAS  PubMed  Google Scholar 

  81. Furlong MT, Titsch C, Xu W, Jiang H, Jemal M, Zeng J. An exploratory universal LC-MS/MS assay for bioanalysis of hinge region-stabilized human IgG4 mAbs in clinical studies. Bioanalysis. 2014;6(13):1747–58. https://doi.org/10.4155/bio.14.64.

    Article  CAS  PubMed  Google Scholar 

  82. van den Broek I, van Dongen WD. LC-MS-based quantification of intact proteins: perspective for clinical and bioanalytical applications. Bioanalysis. 2015;7(15):1943–58. https://doi.org/10.4155/bio.15.113.

    Article  PubMed  Google Scholar 

  83. Ruan Q, Ji QC, Arnold ME, Humphreys WG, Zhu M. Strategy and its implications of protein bioanalysis utilizing high-resolution mass spectrometric detection of intact protein. Anal Chem. 2011;83(23):8937–44. https://doi.org/10.1021/ac201540t.

    Article  CAS  PubMed  Google Scholar 

  84. Gucinski AC, Boyne MT. Evaluation of intact mass spectrometry for the quantitative analysis of protein therapeutics. Anal Chem. 2012;84(18):8045–51. https://doi.org/10.1021/ac301949j.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao Y, Liu G, Yuan X, Gan J, Peterson JE, Shen JX. Strategy for the quantitation of a protein conjugate via hybrid immunocapture-liquid chromatography with sequential HRMS and SRM-based LC-MS/MS analyses. Anal Chem. 2017;89(9):5144–51. https://doi.org/10.1021/acs.analchem.7b00926.

    Article  CAS  PubMed  Google Scholar 

  86. Lanshoeft C, Cianférani S, Heudi O. Generic hybrid ligand binding assay liquid chromatography high-resolution mass spectrometry-based workflow for multiplexed human immunoglobulin G1 quantification at the intact protein level: application to preclinical pharmacokinetic studies. Anal Chem. 2017;89(4):2628–35. https://doi.org/10.1021/acs.analchem.6b04997.

    Article  CAS  PubMed  Google Scholar 

  87. Kang L, Camacho RC, Li W, D’Aquino K, You S, Chuo V, et al. Simultaneous catabolite identification and quantitation of large therapeutic protein at the intact level by immunoaffinity capture liquid chromatography-high-resolution mass spectrometry. Anal Chem. 2017;89(11):6065–75. https://doi.org/10.1021/acs.analchem.7b00674.

  88. Kellie JF, Kehler JR, Mencken TJ, Snell RJ, Hottenstein CS. A whole-molecule immunocapture LC-MS approach for the in vivo quantitation of biotherapeutics. Bioanalysis. 2016;8(20):2103–14. https://doi.org/10.4155/bio-2016-0180.

    Article  CAS  PubMed  Google Scholar 

  89. Liu H, Manuilov AV, Chumsae C, Babineau ML, Tarcsa E. Quantitation of a recombinant monoclonal antibody in monkey serum by liquid chromatography-mass spectrometry. Anal Biochem. 2011;414(1):147–53. https://doi.org/10.1016/j.ab.2011.03.004.

    Article  CAS  PubMed  Google Scholar 

  90. Su D, Ng C, Khosraviani M, Yu SF, Cosino E, Kaur S, et al. Custom-designed affinity capture LC-MS F(ab′)2 assay for biotransformation assessment of site-specific antibody drug conjugates. Anal Chem. 2016;88(23):11340–6. https://doi.org/10.1021/acs.analchem.6b03410.

  91. Neubert H, Muirhead D, Kabir M, Grace C, Cleton A, Arends R. Sequential protein and peptide immunoaffinity capture for mass spectrometry-based quantification of total human β-nerve growth factor. Anal Chem. 2013;85(3):1719–26. https://doi.org/10.1021/ac303031q.

    Article  CAS  PubMed  Google Scholar 

  92. Schultz GA, et al. Large-scale implementation of sequential protein and peptide immunoaffinity enrichment LC/nanoLC–MS/MS for human β-nerve growth factor. 2016.

  93. Xu K, Liu L, Dere R, Mai E, Erickson R, Hendricks A, et al. Characterization of the drug-to-antibody ratio distribution for antibody-drug conjugates in plasma/serum. Bioanalysis. 2013;5(9):1057–71. https://doi.org/10.4155/bio.13.66.

  94. Kleinnijenhuis AJ, Ingola M, Toersche JH, van Holthoon FL, van Dongen WD. Quantitative bottom up analysis of infliximab in serum using protein a purification and integrated muLC-electrospray chip IonKey MS/MS technology. Bioanalysis. 2016;8(9):891–904. https://doi.org/10.4155/bio-2015-0015.

    Article  CAS  PubMed  Google Scholar 

  95. Chambers EE, Fountain KJ, Smith N, Ashraf L, Karalliedde J, Cowan D, et al. Multidimensional LC-MS/MS enables simultaneous quantification of intact human insulin and five recombinant analogs in human plasma. Anal Chem. 2013;86(1):694–702. https://doi.org/10.1021/ac403055d.

  96. Duggan JX, Vazvaei F, Jenkins R. Bioanalytical method validation considerations for LC–MS/MS assays of therapeutic proteins. Bioanalysis. 2015;7(11):1389–95. https://doi.org/10.4155/bio.15.69.

    Article  CAS  PubMed  Google Scholar 

  97. Knutsson M, et al. LC–MS/MS of large molecules in a regulated bioanalytical environment—which acceptance criteria to apply? 2013.

  98. Clingen PH, de Silva IU, McHugh PJ, Ghadessy FJ, Tilby MJ, Thurston DE, et al. The XPF-ERCC1 endonuclease and homologous recombination contribute to the repair of minor groove DNA interstrand crosslinks in mammalian cells produced by the pyrrolo[2,1-c][1,4]benzodiazepine dimer SJG-136. Nucleic Acids Res. 2005;33(10):3283–91. https://doi.org/10.1093/nar/gki639.

  99. Buckwalter M, Dowell JA, Korth-Bradley J, Gorovits B, Mayer PR. Pharmacokinetics of gemtuzumab ozogamicin as a single-agent treatment of pediatric patients with refractory or relapsed acute myeloid leukemia. J Clin Pharmacol. 2004;44(8):873–80. https://doi.org/10.1177/0091270004267595.

    Article  CAS  PubMed  Google Scholar 

  100. Wang J, Gu H, Liu A, Kozhich A, Rangan V, Myler H, et al. Antibody-drug conjugate bioanalysis using LB-LC-MS/MS hybrid assays: strategies, methodology and correlation to ligand-binding assays. Bioanalysis. 2016;8(13):1383–401. https://doi.org/10.4155/bio-2016-0017.

  101. Lee JW. Generic method approaches for monoclonal antibody therapeutics analysis using both ligand binding and LC-MS/MS techniques. Bioanalysis. 2016;8(1):19–27. https://doi.org/10.4155/bio.15.231.

    Article  CAS  PubMed  Google Scholar 

  102. Ouyang Z, Furlong MT, Wu S, Sleczka B, Tamura J, Wang H, et al. Pellet digestion: a simple and efficient sample preparation technique for LC-MS/MS quantification of large therapeutic proteins in plasma. Bioanalysis. 2012;4(1):17–28. https://doi.org/10.4155/bio.11.286.

  103. Zhang Q, Spellman DS, Song Y, Choi B, Hatcher NG, Tomazela D, et al. Generic automated method for liquid chromatography-multiple reaction monitoring mass spectrometry based monoclonal antibody quantitation for preclinical pharmacokinetic studies. Anal Chem. 2014;86(17):8776–84. https://doi.org/10.1021/ac5019827.

  104. Xu K, Liu L, Maia M, Li J, Lowe J, Song A, et al. A multiplexed hybrid LC-MS/MS pharmacokinetic assay to measure two co-administered monoclonal antibodies in a clinical study. Bioanalysis. 2014;6(13):1781–94. https://doi.org/10.4155/bio.14.142.

  105. Sleczka BG, Mehl JT, Shuster DJ, Lewis KE, Moore R, Vuppugalla R, et al. Quantification of human mAbs in mouse tissues using generic affinity enrichment procedures and LC-MS detection. Bioanalysis. 2014;6(13):1795–811. https://doi.org/10.4155/bio.14.143.

  106. Duan X, Abuqayyas L, Dai L, Balthasar JP, Qu J. High-throughput method development for sensitive, accurate, and reproducible quantification of therapeutic monoclonal antibodies in tissues using orthogonal array optimization and nano liquid chromatography/selected reaction monitoring mass spectrometry. Anal Chem. 2012;84(10):4373–82. https://doi.org/10.1021/ac2034166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang SJ, Wu ST, Gokemeijer J, Fura A, Krishna M, Morin P, et al. Attribution of the discrepancy between ELISA and LC-MS/MS assay results of a PEGylated scaffold protein in post-dose monkey plasma samples due to the presence of anti-drug antibodies. Anal Bioanal Chem. 2012;402(3):1229–39. https://doi.org/10.1007/s00216-011-5527-9.

  108. Law WS, Genin JC, Miess C, Treton G, Warren AP, Lloyd P, et al. Use of generic LC-MS/MS assays to characterize atypical PK profile of a biotherapeutic monoclonal antibody. Bioanalysis. 2014;6(23):3225–35. https://doi.org/10.4155/bio.14.167.

  109. Bronsema KJ, Bischoff R, Pijnappel WWMP, van der Ploeg AT, van de Merbel NC. Absolute quantification of the total and antidrug antibody-bound concentrations of recombinant human alpha-glucosidase in human plasma using protein G extraction and LC-MS/MS. Anal Chem. 2015;87(8):4394–401. https://doi.org/10.1021/acs.analchem.5b00169.

    Article  CAS  PubMed  Google Scholar 

  110. Neubert H, Grace C, Rumpel K, James I. Assessing immunogenicity in the presence of excess protein therapeutic using immunoprecipitation and quantitative mass spectrometry. Anal Chem. 2008;80(18):6907–14. https://doi.org/10.1021/ac8005439.

    Article  CAS  PubMed  Google Scholar 

  111. Chen LZ, et al. Development of immunocapture-LC/MS assay for simultaneous ADA isotyping and semiquantitation. J Immunol Res. 2016;2016:7682472.

  112. Lanshoeft C, Wolf T, Walles M, Barteau S, Picard F, Kretz O, et al. The flexibility of a generic LC-MS/MS method for the quantitative analysis of therapeutic proteins based on human immunoglobulin G and related constructs in animal studies. J Pharm Biomed Anal. 2016;131:214–22. https://doi.org/10.1016/j.jpba.2016.08.039.

  113. An B, Zhang M, Qu J. Toward sensitive and accurate analysis of antibody biotherapeutics by liquid chromatography coupled with mass spectrometry. Drug Metab Dispos. 2014;42(11):1858–66. https://doi.org/10.1124/dmd.114.058917.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Qu M, An B, Shen S, Zhang M, Shen X, Duan X, et al. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. Mass Spectrom Rev. 2017;36(6):734–54. https://doi.org/10.1002/mas.21500.

  115. An B, Zhang M, Johnson RW, Qu J. Surfactant-aided precipitation/on-pellet-digestion (SOD) procedure provides robust and rapid sample preparation for reproducible, accurate and sensitive LC/MS quantification of therapeutic protein in plasma and tissues. Anal Chem. 2015;87(7):4023–9. https://doi.org/10.1021/acs.analchem.5b00350.

    Article  CAS  PubMed  Google Scholar 

  116. Bronsema KJ, Bischoff R, van de Merbel NC. Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;893-894:1–14. https://doi.org/10.1016/j.jchromb.2012.02.021.

    Article  CAS  PubMed  Google Scholar 

  117. Li H, Ortiz R, Tran L, Hall M, Spahr C, Walker K, et al. General LC-MS/MS method approach to quantify therapeutic monoclonal antibodies using a common whole antibody internal standard with application to preclinical studies. Anal Chem. 2012;84(3):1267–73. https://doi.org/10.1021/ac202792n.

  118. Nouri-Nigjeh E, Zhang M, Ji T, Yu H, An B, Duan X, et al. Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein. Anal Chem. 2014;86(7):3575–84. https://doi.org/10.1021/ac5001477.

  119. EMA. Guideline on clinical investigation of the pharmacokinetics of therapeutic proteins. 2007.

  120. Bults P, Bischoff R, Bakker H, Gietema JA, van de Merbel NC. LC-MS/MS-based monitoring of in vivo protein biotransformation: quantitative determination of trastuzumab and its deamidation products in human plasma. Anal Chem. 2016;88(3):1871–7. https://doi.org/10.1021/acs.analchem.5b04276.

    Article  CAS  PubMed  Google Scholar 

  121. Hager T, Spahr C, Xu J, Salimi-Moosavi H, Hall M. Differential enzyme-linked immunosorbent assay and ligand-binding mass spectrometry for analysis of biotransformation of protein therapeutics: application to various FGF21 modalities. Anal Chem. 2013;85(5):2731–8. https://doi.org/10.1021/ac303203y.

    Article  CAS  PubMed  Google Scholar 

  122. Hecht R, Li YS, Sun J, Belouski E, Hall M, Hager T, et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One. 2012;7(11):e49345. https://doi.org/10.1371/journal.pone.0049345.

  123. Casi G, Neri D. Antibody–drug conjugates: basic concepts, examples and future perspectives. J Control Release. 2012;161(2):422–8. https://doi.org/10.1016/j.jconrel.2012.01.026.

    Article  CAS  PubMed  Google Scholar 

  124. Xu K, Liu L, Saad OM, Baudys J, Williams L, Leipold D, et al. Characterization of intact antibody-drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography-mass spectrometry. Anal Biochem. 2011;412(1):56–66. https://doi.org/10.1016/j.ab.2011.01.004.

  125. Stephan JP, Kozak KR, Wong WLT. Challenges in developing bioanalytical assays for characterization of antibody-drug conjugates. Bioanalysis. 2011;3(6):677–700. https://doi.org/10.4155/bio.11.30.

    Article  CAS  PubMed  Google Scholar 

  126. Lesur A, Varesio E, Hopfgartner G. Accelerated tryptic digestion for the analysis of biopharmaceutical monoclonal antibodies in plasma by liquid chromatography with tandem mass spectrometric detection. J Chromatogr A. 2010;1217(1):57–64. https://doi.org/10.1016/j.chroma.2009.11.011.

    Article  CAS  PubMed  Google Scholar 

  127. Kumar S, King LE, Clark TH, Gorovits B. Antibody-drug conjugates nonclinical support: from early to late nonclinical bioanalysis using ligand-binding assays. Bioanalysis. 2015;7(13):1605–17. https://doi.org/10.4155/bio.15.107.

    Article  CAS  PubMed  Google Scholar 

  128. Stephan JP, Chan P, Lee C, Nelson C, Elliott JM, Bechtel C, et al. Anti-CD22-MCC-DM1 and MC-MMAF conjugates: impact of assay format on pharmacokinetic parameters determination. Bioconjug Chem. 2008;19(8):1673–83. https://doi.org/10.1021/bc800059t.

  129. Liu A, Kozhich A, Passmore D, Gu H, Wong R, Zambito F, et al. Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: assay development, validation, and a case study. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1002:54–62. https://doi.org/10.1016/j.jchromb.2015.08.007.

  130. Sanderson RJ, Nicholas ND, Baker Lee C, Hengel SM, Lyon RP, Benjamin DR, et al. Antibody-conjugated drug assay for protease-cleavable antibody-drug conjugates. Bioanalysis. 2016;8(1):55–63. https://doi.org/10.4155/bio.15.230.

  131. Heudi O, Barteau S, Picard F, Kretz O. Quantitative analysis of maytansinoid (DM1) in human serum by on-line solid phase extraction coupled with liquid chromatography tandem mass spectrometry—method validation and its application to clinical samples. J Pharm Biomed Anal. 2016;120:322–32. https://doi.org/10.1016/j.jpba.2015.12.026.

    Article  CAS  PubMed  Google Scholar 

  132. Wei D, Sullivan M, Espinosa O, Yang L. A sensitive LC–MS/MS method forthe determination of free maytansinoid DM4 concentrations—method development, validation, and application to the nonclinical studies of antitumor agent DM4 conjugated hu-anti-Cripto MA b B3F6 (B3F6-DM4) in rats and monkeys. Int J Mass Spectrom. 2012;312:53–60. https://doi.org/10.1016/j.ijms.2011.05.010.

    Article  CAS  Google Scholar 

  133. Wei C, Zhang G, Clark T, Barletta F, Tumey LN, Rago B, et al. Where did the linker-payload go? A quantitative investigation on the destination of the released linker-payload from an antibody-drug conjugate with a maleimide linker in plasma. Anal Chem. 2016;88(9):4979–86. https://doi.org/10.1021/acs.analchem.6b00976.

  134. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10(20):7063–70. https://doi.org/10.1158/1078-0432.CCR-04-0789.

  135. Chen J, Yin S, Wu Y, Ouyang J. Development of a native nanoelectrospray mass spectrometry method for determination of the drug-to-antibody ratio of antibody-drug conjugates. Anal Chem. 2013;85(3):1699–704. https://doi.org/10.1021/ac302959p.

    Article  CAS  PubMed  Google Scholar 

  136. Debaene F, Bœuf A, Wagner-Rousset E, Colas O, Ayoub D, Corvaïa N, et al. Innovative native MS methodologies for antibody drug conjugate characterization: high resolution native MS and IM-MS for average DAR and DAR distribution assessment. Anal Chem. 2014;86(21):10674–83. https://doi.org/10.1021/ac502593n.

  137. Dorywalska M, Strop P, Melton-Witt JA, Hasa-Moreno A, Farias SE, Galindo Casas M, et al. Site-dependent degradation of a non-cleavable auristatin-based linker-payload in rodent plasma and its effect on ADC efficacy. PLoS One. 2015;10(7):e0132282. https://doi.org/10.1371/journal.pone.0132282.

  138. He J, Su D, Ng C, Liu L, Yu SF, Pillow TH, et al. High-resolution accurate-mass mass spectrometry enabling in-depth characterization of in vivo biotransformations for intact antibody-drug conjugates. Anal Chem. 2017;89(10):5476–83. https://doi.org/10.1021/acs.analchem.7b00408.

  139. Polakis P. Antibody drug conjugates for cancer therapy. Pharmacol Rev. 2016;68(1):3–19. https://doi.org/10.1124/pr.114.009373.

    Article  CAS  PubMed  Google Scholar 

  140. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58. https://doi.org/10.1038/clpt.2008.170.

    Article  CAS  PubMed  Google Scholar 

  141. Alley SC, Anderson KE. Analytical and bioanalytical technologies for characterizing antibody-drug conjugates. Curr Opin Chem Biol. 2013;17(3):406–11. https://doi.org/10.1016/j.cbpa.2013.03.022.

    Article  CAS  PubMed  Google Scholar 

  142. Kamath AV, Iyer S. Preclinical pharmacokinetic considerations for the development of antibody drug conjugates. Pharm Res. 2015;32(11):3470–9. https://doi.org/10.1007/s11095-014-1584-z.

    Article  CAS  PubMed  Google Scholar 

  143. Khot A, Sharma S, Shah DK. Integration of bioanalytical measurements using PK-PD modeling and simulation: implications for antibody-drug conjugate development. Bioanalysis. 2015;7(13):1633–48. https://doi.org/10.4155/bio.15.85.

    Article  CAS  PubMed  Google Scholar 

  144. Shah DK, King LE, Han X, Wentland JA, Zhang Y, Lucas J, et al. A priori prediction of tumor payload concentrations: preclinical case study with an auristatin-based anti-5T4 antibody-drug conjugate. AAPS J. 2014;16(3):452–63. https://doi.org/10.1208/s12248-014-9576-9.

  145. Lin K, Rubinfeld B, Zhang C, Firestein R, Harstad E, Roth L, et al. Preclinical development of an anti-NaPi2b (SLC34A2) antibody-drug conjugate as a therapeutic for non-small cell lung and ovarian cancers. Clin Cancer Res. 2015;21(22):5139–50. https://doi.org/10.1158/1078-0432.CCR-14-3383.

  146. Erickson HK, Lambert JM. ADME of antibody-maytansinoid conjugates. AAPS J. 2012;14(4):799–805. https://doi.org/10.1208/s12248-012-9386-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Leal M, Wentland JA, Han X, Zhang Y, Rago B, Duriga N, et al. Preclinical development of an anti-5T4 antibody-drug conjugate: pharmacokinetics in mice, rats, and NHP and tumor/tissue distribution in mice. Bioconjug Chem. 2015;26(11):2223–32. https://doi.org/10.1021/acs.bioconjchem.5b00205.

  148. Singh AP, Shin YG, Shah DK. Application of pharmacokinetic-Pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm Res. 2015;32(11):3508–25. https://doi.org/10.1007/s11095-015-1626-1.

    Article  CAS  PubMed  Google Scholar 

  149. Shah DK, Balthasar JP. PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice. Int J Pharm. 2014;465(1–2):228–38. https://doi.org/10.1016/j.ijpharm.2014.01.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Singh AP, Maass KF, Betts AM, Wittrup KD, Kulkarni C, King LE, et al. Evolution of antibody-drug conjugate tumor disposition model to predict preclinical tumor pharmacokinetics of trastuzumab-emtansine (T-DM1). AAPS J. 2016;18(4):861–75. https://doi.org/10.1208/s12248-016-9904-3.

  151. McHugh PJ, Spanswick VJ, Hartley JA. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2001;2(8):483–90. https://doi.org/10.1016/S1470-2045(01)00454-5.

    Article  CAS  PubMed  Google Scholar 

  152. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90. https://doi.org/10.1158/0008-5472.CAN-08-1776.

Download references

Acknowledgements

The authors would like to thank Drs. Naidong Weng, Douglas Leipold, Cyrus Khojasteh-Bakht, and Cornelis Hop for their support and review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenying Jian or Donglu Zhang.

Ethics declarations

Conflict of Interest

There is no conflict of interest for all authors.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Cong Wei and Dian Su are first co-authors.

This article is part of the Topical Collection on Molecular Drug Disposition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Su, D., Wang, J. et al. LC–MS Challenges in Characterizing and Quantifying Monoclonal Antibodies (mAb) and Antibody-Drug Conjugates (ADC) in Biological Samples. Curr Pharmacol Rep 4, 45–63 (2018). https://doi.org/10.1007/s40495-017-0118-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-017-0118-x

Keywords

Navigation