Skip to main content

Advertisement

Log in

Impact of nutraceuticals and dietary supplements on mitochondria modifications in healthy aging: a systematic review of randomized controlled trials

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

To date, the mitochondrial function has been related to several pathways involved in the cellular aging process. Dietary supplements might have reciprocal and multilevel interactions with mitochondria network; however, no systematic review assessed the role of different nutraceuticals in mitochondria modification of healthy older adults.

Aim

To assess the effects of different dietary supplements on mitochondria modifications in older adults.

Methods

On February 22, 2022, PubMed, Scopus, Web of Science, and Cochrane were systematically searched from inception for randomized controlled trials (RCTs). According to PICO model, we considered healthy older adults as participants, nutraceutical treatment as intervention, any treatment as comparator, mitochondrial modifications as outcome. Jadad scale was used for the quality assessment.

Results

Altogether, 8489 records were identified and screened until 6 studies were included. A total of 201 healthy older adults were included in the systematic review (mean age ranged from 67.0 ± 1.0 years to 76.0 ± 5.6 years). The dietary supplements assessed were sodium nitrite, N-3 polyunsaturated fatty acids, hydrogen-rich water, nicotinamide riboside, urolithin A, and whey protein powder. Positive effects were reported in terms of mitochondrial oxidative and antioxidant capacity, volume, bioenergetic capacity, and mitochondrial transcriptome based on the nutritional supplements. The quality assessment underlined that all the studies included were of good quality.

Discussion

Although dietary supplements might provide positive effects on mitochondria modifications, few studies are currently available in this field.

Conclusion

Further studies are needed to better elucidate the reciprocal and multilevel interactions between nutraceuticals, mitochondria, and environmental stressors in healthy older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kennedy BK, Berger SL, Brunet A et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713. https://doi.org/10.1016/j.cell.2014.10.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Organization WH (2015) World Report on Ageing and Health. https://apps.who.int/iris/bitstream/handle/10665/186463/9789240694811_eng.pdf?sequence=1 Accessed Acces Date 2022

  3. Organization WH (2016) The global strategy and ActionPlan on Ageing and Health. https://www.who.int/ageing/global-strategy/en/. Accessed Acces Date 2022

  4. TumasianHarish RAA, Kundu G et al (2021) Skeletal muscle transcriptome in healthy aging. Nat Commun 12:2014. https://doi.org/10.1038/s41467-021-22168-2

    Article  CAS  Google Scholar 

  5. Ukraintseva S, Arbeev K, Duan M et al (2021) Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech Ageing Dev 194:111418. https://doi.org/10.1016/j.mad.2020.111418

    Article  PubMed  CAS  Google Scholar 

  6. Petkovic M, O’Brien CE, Jan YN (2021) Interorganelle communication, aging, and neurodegeneration. Genes Dev 35:449–469. https://doi.org/10.1101/gad.346759.120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Boengler K, Kosiol M, Mayr M et al (2017) Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 8:349–369. https://doi.org/10.1002/jcsm.12178

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian mitochondria and aging: an update. Cell Metab 25:57–71. https://doi.org/10.1016/j.cmet.2016.09.017

    Article  PubMed  CAS  Google Scholar 

  9. Franceschi C, Garagnani P, Vitale G et al (2017) Inflammaging and “Garb-aging.” Trends Endocrinol Metab 28:199–212. https://doi.org/10.1016/j.tem.2016.09.005

    Article  PubMed  CAS  Google Scholar 

  10. Lopez-Otin C, Galluzzi L, Freije JMP et al (2016) Metabolic control of longevity. Cell 166:802–821. https://doi.org/10.1016/j.cell.2016.07.031

    Article  PubMed  CAS  Google Scholar 

  11. Sajjadi E, Venetis K, Scatena C et al (2020) Biomarkers for precision immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience 14:1150. https://doi.org/10.3332/ecancer.2020.1150

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lippi L, de Sire A, Mezian K et al (2022) Impact of exercise training on muscle mitochondria modifications in older adults: a systematic review of randomized controlled trials. Aging Clin Exp Res. https://doi.org/10.1007/s40520-021-02073-w

    Article  PubMed  Google Scholar 

  13. Gurău F, Baldoni S, Prattichizzo F et al (2018) Anti-senescence compounds: A potential nutraceutical approach to healthy aging. Ageing Res Rev 46:14–31. https://doi.org/10.1016/j.arr.2018.05.001

    Article  PubMed  CAS  Google Scholar 

  14. Lee J, Koo N, Min DB (2004) Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf 3:21–33. https://doi.org/10.1111/j.1541-4337.2004.tb00058.x

    Article  PubMed  CAS  Google Scholar 

  15. Calcinotto A, Kohli J, Zagato E et al (2019) Cellular senescence: aging, cancer, and injury. Physiol Rev 99:1047–1078. https://doi.org/10.1152/physrev.00020.2018

    Article  PubMed  CAS  Google Scholar 

  16. Kubben N, Misteli T (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18:595–609. https://doi.org/10.1038/nrm.2017.68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Herbst A, Lee CC, Vandiver AR et al (2020) Mitochondrial DNA deletion mutations increase exponentially with age in human skeletal muscle. Aging Clin Exp Res. https://doi.org/10.1007/s40520-020-01698-7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lefkimmiatis K, Grisan F, Iannucci LF et al (2020) Mitochondrial communication in the context of aging. Aging Clin Exp Res. https://doi.org/10.1007/s40520-019-01451-9

    Article  PubMed  Google Scholar 

  19. Corti C, Sajjadi E, Fusco N (2019) Determination of mismatch repair status in human cancer and its clinical significance: does one size fit all? Adv Anat Pathol 26:270–279. https://doi.org/10.1097/PAP.0000000000000234

    Article  PubMed  Google Scholar 

  20. Nuti R, Brandi ML, Checchia G et al (2019) Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med 14:85–102. https://doi.org/10.1007/s11739-018-1874-2

    Article  PubMed  Google Scholar 

  21. Iolascon G, de Sire A, Curci C et al (2021) Osteoporosis guidelines from a rehabilitation perspective: systematic analysis and quality appraisal using AGREE II. Eur J Phys Rehabil Med 57:273–279. https://doi.org/10.23736/S1973-9087.21.06581-3

    Article  PubMed  Google Scholar 

  22. Pinheiro MB, Oliveira J, Bauman A et al (2020) Evidence on physical activity and osteoporosis prevention for people aged 65+ years: a systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int J Behav Nutr Phys Act 17:150. https://doi.org/10.1186/s12966-020-01040-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Sire A, Invernizzi M, Lippi L et al (2019) Nutritional supplementation in hip fracture sarcopenic patients a narrative review. Clin Cases Miner Bone Metab 16:27–30

    Google Scholar 

  24. Invernizzi M, de Sire A, D’Andrea F et al (2019) Effects of essential amino acid supplementation and rehabilitation on functioning in hip fracture patients: a pilot randomized controlled trial. Aging Clin Exp Res 31:1517–1524. https://doi.org/10.1007/s40520-018-1090-y

    Article  PubMed  Google Scholar 

  25. de Sire A, Baricich A, Renò F et al (2020) Myostatin as a potential biomarker to monitor sarcopenia in hip fracture patients undergoing a multidisciplinary rehabilitation and nutritional treatment: a preliminary study. Aging Clin Exp Res 32:959–962. https://doi.org/10.1007/s40520-019-01436-8

    Article  PubMed  Google Scholar 

  26. Simioni C, Zauli G, Martelli AM et al (2018) Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9:17181–17198. https://doi.org/10.18632/oncotarget.24729

    Article  PubMed  PubMed Central  Google Scholar 

  27. Singh P, Sivanandam TM, Konar A et al (2021) Role of nutraceuticals in cognition during aging and related disorders. Neurochem Int 143:104928. https://doi.org/10.1016/j.neuint.2020.104928

    Article  PubMed  CAS  Google Scholar 

  28. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300. https://doi.org/10.1093/geronj/11.3.298

    Article  PubMed  CAS  Google Scholar 

  29. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x

    Article  PubMed  CAS  Google Scholar 

  30. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  31. Organization WH (2020) Decade of Healthy Ageing 2020–2030. https://www.who.int/initiatives/decade-of-healthy-ageing. Accessed Acces Date 2022

  32. Jadad AR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12. https://doi.org/10.1016/0197-2456(95)00134-4

    Article  PubMed  CAS  Google Scholar 

  33. Sterne JAC, Savovic J, Page MJ et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  Google Scholar 

  34. Elhassan YS, Kluckova K, Fletcher RS et al (2019) Nicotinamide riboside augments the aged human skeletal muscle NAD(+) metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep 28:e6. https://doi.org/10.1016/j.celrep.2019.07.043

    Article  CAS  Google Scholar 

  35. Rossman MJ, Gioscia-Ryan RA, Santos-Parker JR et al (2021) Inorganic nitrite supplementation improves endothelial function with aging: translational evidence for suppression of mitochondria-derived oxidative stress. Hypertension 77:1212–1222. https://doi.org/10.1161/HYPERTENSIONAHA.120.16175

    Article  PubMed  CAS  Google Scholar 

  36. Yoshino J, Smith GI, Kelly SC et al (2016) Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol Rep https://doi.org/10.14814/phy2.12785

  37. Zanini D, Todorovic N, Korovljev D et al (2021) The effects of 6-month hydrogen-rich water intake on molecular and phenotypic biomarkers of aging in older adults aged 70 years and over: A randomized controlled pilot trial. Exp Gerontol 155:111574. https://doi.org/10.1016/j.exger.2021.111574

    Article  PubMed  CAS  Google Scholar 

  38. Liu S, D’Amico D, Shankland E et al (2022) Effect of urolithin a supplementation on muscle endurance and mitochondrial health in older adults: a randomized clinical trial. JAMA Netw Open 5:e2144279. https://doi.org/10.1001/jamanetworkopen.2021.44279

    Article  PubMed  PubMed Central  Google Scholar 

  39. Connell NJ, Grevendonk L, Fealy CE et al (2021) NAD+-precursor supplementation with L-tryptophan, nicotinic acid, and nicotinamide does not affect mitochondrial function or skeletal muscle function in physically compromised older adults. J Nutr 151:2917–2931. https://doi.org/10.1093/jn/nxab193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Butler AR, Feelisch M (2008) Therapeutic uses of inorganic nitrite and nitrate. Circulation 117:2151–2159. https://doi.org/10.1161/circulationaha.107.753814

    Article  PubMed  CAS  Google Scholar 

  41. Philp LK, Heilbronn LK, Janovska A et al (2015) Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice. PLoS ONE 10:e0117494. https://doi.org/10.1371/journal.pone.0117494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Johnson ML, Lalia AZ, Dasari S et al (2015) Eicosapentaenoic acid but not docosahexaenoic acid restores skeletal muscle mitochondrial oxidative capacity in old mice. Aging Cell 14:734–743. https://doi.org/10.1111/acel.12352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yang Y, Zhu Y, Xi X (2018) Anti-inflammatory and antitumor action of hydrogen via reactive oxygen species (Review). Oncol Lett. https://doi.org/10.3892/ol.2018.9023

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dollerup OL, Chubanava S, Agerholm M et al (2020) Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol 598:731–754. https://doi.org/10.1113/jp278752

    Article  PubMed  CAS  Google Scholar 

  45. Ryu D, Mouchiroud L, Andreux PA et al (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22:879–888. https://doi.org/10.1038/nm.4132

    Article  PubMed  CAS  Google Scholar 

  46. D’Amico D, Andreux PA, Valdés P et al (2021) Impact of the natural compound urolithin a on health, disease, and aging. Trends Mol Med 27:687–699. https://doi.org/10.1016/j.molmed.2021.04.009

    Article  PubMed  CAS  Google Scholar 

  47. Mouchiroud L, Houtkooper RH, Auwerx J (2013) NAD+metabolism: A therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol 48:397–408. https://doi.org/10.3109/10409238.2013.789479

    Article  PubMed  CAS  Google Scholar 

  48. Yoshino J, Kathryn M, Imai S-I (2011) Nicotinamide mononucleotide, a Key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14:528–536. https://doi.org/10.1016/j.cmet.2011.08.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gomes AP, Price NL, Ling AJ et al (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638. https://doi.org/10.1016/j.cell.2013.11.037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Maccioni RB, Calfío C, González A et al (2022) Novel nutraceutical compounds in alzheimer prevention. Biomolecules. https://doi.org/10.3390/biom12020249

    Article  PubMed  PubMed Central  Google Scholar 

  51. Iolascon G, Gimigliano R, Bianco M et al (2017) Are dietary supplements and nutraceuticals effective for musculoskeletal health and cognitive function? a scoping review. J Nutr Health Aging 21:527–538. https://doi.org/10.1007/s12603-016-0823-x

    Article  PubMed  CAS  Google Scholar 

  52. Dominguez LJ, Veronese N, Vernuccio L et al (2021) Nutrition, physical activity, and other lifestyle factors in the prevention of cognitive decline and dementia. Nutrients. https://doi.org/10.3390/nu13114080

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu Z, Ren Z, Zhang J et al (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:477. https://doi.org/10.3389/fphys.2018.00477

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brambilla D, Mancuso C, Scuderi MR et al (2008) The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. Nutr J 7:29. https://doi.org/10.1186/1475-2891-7-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bordoni L, Gabbianelli R (2020) Mitochondrial DNA and neurodegeneration: any role for dietary antioxidants? Antioxidants (Basel). https://doi.org/10.3390/antiox9080764

    Article  Google Scholar 

  56. Niyazov DM, Kahler SG, Frye RE (2016) Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol Syndromol 7:122–137. https://doi.org/10.1159/000446586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Luceri C, Bigagli E, Pitozzi V et al (2015) A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. Eur J Nutr 56:865–877

    Article  PubMed  Google Scholar 

  58. Rescigno T, Micolucci L, Tecce MF et al (2017) Bioactive nutrients and nutrigenomics in age-related diseases. Molecules. https://doi.org/10.3390/molecules22010105

    Article  PubMed  PubMed Central  Google Scholar 

  59. Morsanuto V, Galla R, Molinari C et al (2020) A New palmitoylethanolamide form combined with antioxidant molecules to improve its effectivess on neuronal aging. Brain Sci 10:457

    Article  PubMed Central  CAS  Google Scholar 

  60. Di Meo F, Valentino A, Petillo O et al (2020) Bioactive polyphenols and neuromodulation: molecular mechanisms in neurodegeneration. Int J Mol Sci. https://doi.org/10.3390/ijms21072564

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen S-q, Wang Z-s, Ma Y-X et al (2018) Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Molecules 23:512

    Article  PubMed Central  Google Scholar 

  62. Molinari C, Morsanuto V, Ghirlanda S et al (2019) Role of combined lipoic acid and Vitamin D3 on astrocytes as a way to prevent brain ageing by induced oxidative stress and iron accumulation. Oxid Med Cell Longev. https://doi.org/10.1155/2019/2843121

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tachtsis B, Camera DM, Lacham-Kaplan O (2018) Potential roles of n-3 PUFAs during skeletal muscle growth and regeneration. Nutrients 10:309

    Article  PubMed Central  Google Scholar 

  64. Ticinesi A, Meschi T, Lauretani F et al (2016) Nutrition and inflammation in older individuals: focus on vitamin D, n-3 polyunsaturated fatty acids and whey proteins. Nutrients 8:186. https://doi.org/10.3390/nu8040186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Da Boit M, Hunter AM, Gray SR (2017) Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance. Metabolism 66:45–54. https://doi.org/10.1016/j.metabol.2016.10.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jing E, O’Neill BT, Rardin MJ et al (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62:3404–3417. https://doi.org/10.2337/db12-1650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lantier L, Williams AS, Williams IM et al (2015) SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high-fat-fed mice. Diabetes 64:3081–3092. https://doi.org/10.2337/db14-1810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Pfeffer G, Horvath R, Klopstock T et al (2013) New treatments for mitochondrial disease-no time to drop our standards. Nat Rev Neurol 9:474–481. https://doi.org/10.1038/nrneurol.2013.129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tarnopolsky MA, Raha S (2005) Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 37:2086–2093. https://doi.org/10.1249/01.mss.0000177341.89478.06

    Article  PubMed  CAS  Google Scholar 

  70. Higgins JPT TJ, Chandler J, Cumpston M (2021) Cochrane handbook for systematic reviews of interventions version 6.2 (updated February 2021)

Download references

Acknowledgements

The authors would like to thank Dr. Moalli Stefano for the graphical development of Fig. 2.

Funding

The study was not funded.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LL, AdS, and MI; Methodology: AdS, and MI; Database searching: LL, AdS, MI; Data screening: LL, AdS, MI; Data extraction LL, AdS, MI; Data synthesis and interpretation: LL, AdS, MI; Writing – original draft preparation: LL, AF; Writing – review & editing: AdS, MI; Visualization: AT, CC, FdA, FU; Study supervision: AdS, MI; Study submission: LL. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Lorenzo Lippi.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Statement of human and animals rights

This review reports no participant data or original research findings that require ethics approval.

Consent to participate

For this type of study, formal consent is not required.

Consent for publication

All the authors declare that they give their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lippi, L., Uberti, F., Folli, A. et al. Impact of nutraceuticals and dietary supplements on mitochondria modifications in healthy aging: a systematic review of randomized controlled trials. Aging Clin Exp Res 34, 2659–2674 (2022). https://doi.org/10.1007/s40520-022-02203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-022-02203-y

Keywords

Navigation