Skip to main content

Advertisement

Log in

Mixed infection of plant viruses: diagnostics, interactions and impact on host

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Globally, viral diseases cause huge economic losses in crops and their management is a big challenge to growers as well as researchers. Mixed infection is the existence of more than one virus in single plant, which results in varied symptoms at the same time. The presence of more than one virus always leads to difficulty in understanding the etiology of disease. Most of the viral diseases go unnoticed either due to the latent nature of infection of virus(es) or due to low severity of symptoms. But this might be true in case of single infection of the host by the concerned virus. When such viruses are seen causing infection in combination with other viruses at particular time, more severe disease symptoms can be observed. For any successful management of viral disease especially during mixed infection, detection and identification of plant viruses causative of the disease are of foremost importance. Several approaches like cocktail ELISA, multiplex PCR for known viruses and next-generation sequencing for both known and unknown viruses have been developed for detection of mixed infection of viruses. During mixed infection, several kinds of interaction commonly referred to as synergistic or antagonistic interactions are going on between and among the viruses, which aggravate the disease with more severe symptoms than with single infections. Here, we review the mixed infection of viruses, methods of detection, factors influencing, interactions and impact on plant during mixed infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullahi I, Rott M (2009) Microarray immunoassay for the detection of grapevine and tree fruit viruses. J Virol Methods 160:90–100

    CAS  PubMed  Google Scholar 

  • Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M et al (2009) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 10:537–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agindotan B, Perry KL (2008) Macroarray detection of eleven potato-infecting viruses and potato spindle tuber viroid. Plant Dis 92:730–740

    CAS  PubMed  Google Scholar 

  • Al Rwahnih M, Daubert S, Golino D, Rowhani A (2009) Deep sequencing analysis of RNAs from a grapevine showing syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387:395–401

    CAS  PubMed  Google Scholar 

  • Alvez-Junior M, Alfenas-Zerbini P, Andrade EC, Esposito DA, Silva FN, da Cruz ACF, Ventrella MC, Otoni WC, Zerbini FM (2009) Synergism and negative interference during co-infection of tomato and Nicotiana benthamiana with two bipartite begomoviruses. Virology 387:257–266

    Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agro technology drivers. Trends Ecol Evol 19:535–544

    PubMed  Google Scholar 

  • Anjos JR, Jarlfors U, Ghabrial SA (1992) Soybean mosaic potyvirus enhances the titer of two comoviruses in dually infected soybean plants. Phytopathology 82:1022–1027

    Google Scholar 

  • Bak A, Cheung AL, Yang C, Whitham SA, Casteel CL (2017) A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 8:14493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balogun OS, Teraoka T, Kunimi Y (2005) Influence of the host cultivar on disease and viral accumulation dynamics in tomato under mixed infection with potato virus X And tomato mosaic virus. Phytopathol Mediterr 44:29–37

    CAS  Google Scholar 

  • Baltenberger DE, Ohm HW, Foster JE (1987) Reactions of oat, barley, and wheat to infection with barley yellow dwarf virus isolates. Crop Sci 27:195

    Google Scholar 

  • Barker H, Woodford JAT (1992) Spread of potato leafroll virus is decreased from plants of potato clones in which virus accumulation is restricted. Ann Appl Biol 121:345–354

    Google Scholar 

  • Bergervoet JHW, Peters J, Jose RCM, van Beckhoven G´eW, van den Bovenkampb, James W, Jacobson C, Jan M, van der Wolf (2008) Multiplex microsphere immuno-detection of potato virus Y, X and PLRV. J Virol Methods 149:63–68

    CAS  PubMed  Google Scholar 

  • Beperet I, Irons SL, Simón O, King LA, Williams T, Possee RD, López-Ferber M, Caballero P (2014) Superinfection exclusion in alphabaculovirus infections is concomitant with actin reorganization. J Virol 88:3548–3556

    PubMed  PubMed Central  Google Scholar 

  • Biosecurity New Zealand (2009). Citrus (Citrus), Fortunella (Kumquat) and Poncirus (Trifoliate orange) post-entry quarantine testing manual. Ministry of agriculture and forestry, biosecurity, Auckland, pp. 58

  • Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J, Tomlinson J et al (2014) Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res 186:20–31

    CAS  PubMed  Google Scholar 

  • Boubourakas I, Fukuta S, Kyriakopoulou P (2009) Sensitive and rapid detection of peach latent mosaic viroid by the reverse transcription loop-mediated isothermal amplification. J Virol Methods 160:63–68

    CAS  PubMed  Google Scholar 

  • Bourdin D, Lecoq H (1991) Evidence that heteroencapsidation between two potyviruses is involved in aphid transmission of a non-aphid transmissible isolate from mixed infections. Phytopathology 81:1459–1464

    Google Scholar 

  • Calvert LA, Thresh JM (2002) The virus and virus diseases of cassava. In: Hillocks RJ, Thresh JM, Belloti AC (eds) Cassava: viology, production and utilization. CABI Publishing, Wallingford

    Google Scholar 

  • Carr RJ, Kim KS (1983) Evidence that bean golden mosaic virus invades non-phloem tissue in double infections with tobacco mosaic virus. J Gen Virol 64:2489–2492

    Google Scholar 

  • Charlermroj R, Himananto O, Seepiban C, Kumpoosiri M, Warin N et al (2013) Multiplex detection of plant pathogens using a microsphere immunoassay technology. PLoS ONE 8(4):e62344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez-Calvillo G, Contreras-Paresdes CA, Mora-Macias J, Noa-Carrazana JC, Serrano-Rubio AA, Dinkova TD, Carrillo-Tripp M, Silva-Rosales L (2016) Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya is determined by their order of infection. Virology 489:179–191

    CAS  PubMed  Google Scholar 

  • Chen Z, Tan JY, Wen Y, Niu S, Wong SM (2012) A game-theoretic model of interactions between hibiscus latent Singapore virus and tobacco mosaic virus. PLoS ONE 7:e37007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chikh-Ali M, Gray SM, Karasev AV (2013) An improved multiplex IC-RT-PCR assay distinguishes nine strains of Potato virus Y. Plant Dis 97:1370–1374

    CAS  PubMed  Google Scholar 

  • Choi SK, Yoon JY, Ryu H, Choi JK, Palukaitis P, ParkWM, (2002) Systemic movement of a movement-deficient strain of Cucumber mosaic virus in zucchini squash is facilitated by a cucurbit-infecting potyvirus. J Gen Virol 83:3173–3178

    CAS  PubMed  Google Scholar 

  • Constable FE, Connellan J, Nicholas P, Rodoni BC (2013) The reliability of woody indexing for detection of grapevine virus associated diseases in three different climatic conditions in Australia. Aust J Grape Wine Res 19:74–80

    Google Scholar 

  • Creamer R, Falk BW (1990) Direct detection of transcapsidated barley yellow dwarf luteoviruses in doubly infected plants. J Gen Virol 71:211–217

    CAS  Google Scholar 

  • De Bokx JA, Van Hoof HA, Piron PGM (1978) Relation between concentration of potato virus YN and its availability to Myzus persicae. Eur J Plant Pathol 84:95–100

    Google Scholar 

  • Deng XG, Zhu F, Chen YJ, Liu J, Zhu T, Li JY et al (2014) A more sensitive and rapid multiplex RT-PCR assay combining with magnetic nanobeads for simultaneous detection of viruses in sweet potato. Eur J Plant Pathol 140:111–117

    CAS  Google Scholar 

  • Domingo-Calap ML, Moreno AB, Diaz-Pendon JA, Moreno A, Fereres A, Lopez-Moya JJ (2020) Assessing the impact on virus transmission and insect vector behavior of a viral mixed infection in melon. Phytopathology 110:174–186

    CAS  PubMed  Google Scholar 

  • El-Araby WS, Ibrahim IA, Hemeida AA, Mahmoud A, Soliman AM, El-Attar AK, Mazyad HM (2009) Biological, serological and molecular diagnosis of three major potato viruses in Egypt. Int J Virol 5(2):77–88

    CAS  Google Scholar 

  • Fischbach J, Xander NC, Frohme M, Glökler JF (2015) Shining a light on LAMP assays-a comparison of LAMP visualization methods including the novel use of berberine. Biotechniques 58:189–194

    CAS  PubMed  Google Scholar 

  • Folimonova SY, Robertson CJ, Shilts T, Folimonov AS, Hilf ME, Garnsey SM, Dawson WO (2010) Infection with strains of Citrus tristezavirus does not exclude superinfection by other strains of the virus. J Virol 84:1314–1325

    CAS  PubMed  Google Scholar 

  • Froissart R, Michalakis Y, Blanc S (2002) Helper component trans complementation in the vector transmission of plant viruses. Phytopathology 92:576–579

    PubMed  Google Scholar 

  • Garcia-Cano E, Resende RO, Fernandez-Munoz R, Moriones E (2006) Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology 96:1263–1269

    CAS  PubMed  Google Scholar 

  • García-Marcos A, Pacheco R, Martiáñez J, González-Jara P, Díaz-Ruíz JR, Tenllado F (2009) Transcriptional changes and oxidative stress associated with the synergistic interaction between potato virus X and potato virus Y and their relationship with symptom expression. Mol Plant Microbe Interact 22:1431–1444

    PubMed  Google Scholar 

  • Gentit P (2006) Detection of plum pox virus: biological methods. EPPO Bulletin 36:251–253

    Google Scholar 

  • Goldberg KB, Brakke M (1987) Concentration of Maize chlorotic mottle virus increased in mixed infections with Maize dwarf mosaic virus, strain B. Phytopathology 77:162–167

    Google Scholar 

  • Gomez P, Sempere RN, Amari K, Gomez-Aix C, Aranda MA (2010) Epidemics of Tomato torrado virus, Pepino mosaic virus and Tomato chlorosis virus in tomato crops: do mixed infections contribute to torrado disease epidemiology? Ann Appl Biol 156:401–410

    CAS  Google Scholar 

  • Gonalez-Jara P, Atencio FA, Martinez-Garcia B, Barajas D, Tenllado F, Diaz-Ruiz JR (2005) A single amino acid mutation in the plum pox virus helper component-proteinase gene abolishes both synergistic and RNA silencing suppression activities. Phytopathology 95:894–901

    Google Scholar 

  • Gray SM, Power AG, Smith DM, SeamanAltman AJNS (1991) Aphid transmission of barley yellow dwarf virus: acquisition access periods and virus concentration requirements. Phytopathology 81:539–545

    Google Scholar 

  • Hacker DL, Fowler BC (2000) Complementation of the host range restriction of southern cowpea mosaic virus in bean by southern bean mosaic virus. Virology 266:140–149

    CAS  PubMed  Google Scholar 

  • Herranz MC, Sánchez-Navarro JA, Aparicio F, Pallás V (2005) Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or ‘polyprobe’. J Virol Methods 124:49–55

    CAS  PubMed  Google Scholar 

  • Ivars P, Alonso M, Borja M, Hernandez C (2004) Development of a non-radioactive dot-blot hybridisation assay for the detection of Pelargonium flower break virus and pelargonium line pattern virus. Eur J Plant Pathol 110:275–283

    CAS  Google Scholar 

  • Jacobson AL, Duffy S, Sseruwagi P (2018) Whitefly-transmitted viruses threatening cassava production in Africa. Curr Opin Virol 33:167–176

    PubMed  Google Scholar 

  • Jo Y, Lian S, Chu H, Cho JK, Yoo A-H, Choi H et al (2018) Peach RNA viromes in six different peach cultivars. Sci Rep 8:1844

    PubMed  PubMed Central  Google Scholar 

  • Jones RAC, Barbetti MJ (2012) Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Rev 7(22):1–32

    Google Scholar 

  • Kanakala S, Jyothsna P, Shukla R, Tiwari N, Veer BS, Swarnalatha P, Krishnareddy M, Malathi VG (2013) Asymmetric synergism and heteroencapsidation between two bipartite begomoviruses, Tomato leaf curl NewDelhi virus and Tomato leaf curl Palampur virus. Virus Res 174:126–136

    CAS  PubMed  Google Scholar 

  • Kapoor R, Mandal B, Paul PK, Chigurupati P, Jain RK (2014) Production of cocktail of polyclonal antibodies using bacterial expressed recombinant protein for multiple virus detection. J Virol Methods 196:7–14

    CAS  PubMed  Google Scholar 

  • Kapoor R, Mandal B, Paul PK, Jain RK (2013) Simultaneous detection of potato viruses Yand X by DAC-ELISA using polyclonal antibodies raised against fused coat proteins expressed in Escherichia coli. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-013-0251-5

    Article  Google Scholar 

  • Karyeija RF, Kreuze JF, Gibson RW, Valkonen JP (2000) Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology 269:26–36

    CAS  PubMed  Google Scholar 

  • Klerks MM, Leone GOM, Verbeek M, van den Heuvel JFJM, Schoen CD (2001) Development of a multiplex AmpliDet RNA for the simultaneous detection of Potato leafroll virus and Potato virus Y in potato tubers. J Virol Methods 93:115–125

    CAS  PubMed  Google Scholar 

  • Krawczyk K, Uszczynska-Ratajczak B, Majewska A, Borodynko-Filas N (2017) DNA microarray-based detection and identification of bacterial and viral pathogens of maize. J Plant Dis Prot 124:577–583

    Google Scholar 

  • Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I et al (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7

    CAS  PubMed  Google Scholar 

  • Kumari P, Singh AK, Sharma VK, Chattopadhyay B, Chakraborty S (2011) A novel recombinant tomato-infecting begomovirus capable of transcomplementing heterologous DNA-B components. Adv Virol 156:769–783

    CAS  Google Scholar 

  • Kwon JY, Hong JS, Kim MJ, Choi SH, Min BE, Song EG et al (2014) Simultaneous multiplex PCR detection of seven cucurbit infecting viruses. J Virol Methods 206:133–139

    CAS  PubMed  Google Scholar 

  • Cheng-Ping K, Wen-Shi C, Tso-Chi Y (2018) Use of fluorescent microsphere-based assay for detection of three cucurbit-infecting viruses. Plant Dis 102:2324–2329

    Google Scholar 

  • Legg JP, Thresh JM (2000) Cassava mosaic virus disease in East Africa: dynamic disease in a changing environment. Virus Res 71:135–149

    CAS  PubMed  Google Scholar 

  • Legrand P (2015) Biological assays for plant viruses and other graft transmissible pathogens diagnoses: a review. Bulletin OEPP/EPPO Bulletin 45(2):240–251

    Google Scholar 

  • Legg JP, Fauquet CM (2004) Cassava mosaic geminiviruses in Africa. Plant Mol Biol 56:31–39

    Google Scholar 

  • Lenarcic R, Morisset D, Mehle N, Ravnikar M (2013) Fast real-time detection of potato spindle tuber viroid by RT-LAMP. Plant Pathol 62:1147–1156

    CAS  Google Scholar 

  • Lim MS, Kim SM, Choi SH (2016) Simultaneous detection of three lily infecting viruses using a multiplex Luminex bead array. J Virol Methods 231:34–37

    CAS  PubMed  Google Scholar 

  • Majumder S, Baranwal VK (2014) Simultaneous detection of four garlic viruses by multiplex reverse transcription PCR and their distribution in Indian garlic accessions. J Virol Methods 202:34–38

    CAS  PubMed  Google Scholar 

  • Manoussopoulos IN (2001) Acquisition and retention of potato virus Y helper component in the transmission of potato aucuba mosaic virus by aphids. J Phytopathol 149:103–106

    Google Scholar 

  • Mascia T, Gallitelli D (2016) Synergies and antagonisms in virus interactions. Plant Sci 252:176–192

    CAS  PubMed  Google Scholar 

  • Meena RP, Baranwal VK (2016) Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees. J Virol methods 235:58–64

    CAS  PubMed  Google Scholar 

  • Mendez-Lozano J, Torres-Pacheco I, Fauquet CM, Rivera-Bustamante RF (2003) Interactions between geminiviruses in a naturally o ccurring mixture: Pepper huasteco virus and Pepper golden mosaic virus. Phytopathology 93:270–277

    CAS  PubMed  Google Scholar 

  • Minutillo SA, Mascia T, Gallitelli D (2012) A DNA probe mix for the multiplex detection of ten artichoke viruses. Eur J Plant Pathol 134:459–465

    CAS  Google Scholar 

  • Mühlbach HP, Weber U, Gomez G, Pállas V, Duran-Vila N, Hadidi A (2003) Molecular hybridization. In: Hadidi A, Flores R, Randles JW, Semancik J (eds) Viroids. CSIRO, Collingwood, pp 103–114

    Google Scholar 

  • Mukasa SB, Rubaihayo PR, Valkonen JPT (2006) Interactions between a crinivirus, an ipomovirus and a potyvirus in coinfected sweetpotato plants. Plant Pathol 55:458–467

    CAS  Google Scholar 

  • Murant AF (1990) Dependence of groundnut rosette virus on its satellite RNA as well as on groundnut rosette assistor luteovirus for transmission byAphis craccivora. J Gen Virol 71:2163–2166

    CAS  PubMed  Google Scholar 

  • Nabi SU, Mir JI, Sharma OC, Singh DB, Zaffer S, Sheikh MA et al (2018) Optimization of tissue and time for rapid serological and molecular detection of apple stem pitting virus and apple stem grooving virus in apple. Phytoparasitica 46(5):705–713

    CAS  Google Scholar 

  • Naidu R, Rowhani A, Fuchs M, Golino D, Martelli GP (2014) Grapevine leafroll: a complex viral disease affecting a high value fruit crop. Plant Dis 98:1172–1185

    CAS  PubMed  Google Scholar 

  • Naidu RA, Maree HJ, Burger JT (2015) Grapevine leafroll disease and associated viruses: a unique pathosystem. Annu Rev Phytopathol 53:614–634

    Google Scholar 

  • Nikitin MM, Statsyuk NV, Frantsuzov PA, Dzhavakhiya VG, Golikov AG (2018) Matrix approach to the simultaneous detection of multiple potato pathogens by real-time PCR. J Appl Microbiol 124(3):797–809

    CAS  PubMed  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucl Acids Res 28:e63i–63vii

    Google Scholar 

  • Pallás V, Sánchez-Navarro JA, James D (2018) Recent advances on the multiplex molecular detection of plant viruses and viroids. Front Microbiol 9:2087

    PubMed  PubMed Central  Google Scholar 

  • Papayiannis LC, Harkou IS, Markou YM, Demetriou CN, Katis NI (2011) Rapid discrimination of tomato chlorosis virus, tomato infectious chlorosis virus and co-amplification of plant internal control using real-time RT-PCR. J Virol Methods 176:53–59

    CAS  PubMed  Google Scholar 

  • Passmore BK, Sanger M, Chin LS, Falk BW, Bruening G (1993) Beet western yellows virus-associated RNA: an independently replicating RNA that stimulates virus accumulation. PNAS USA 90:10168–10172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pechinger K, Chooi KM, MacDiarmid RM, Harper SJ, Ziebell H (2019) A new era for mild strain cross-protection. Viruses 11(7):670

    CAS  PubMed Central  Google Scholar 

  • Peng Q, Qiu L, Yang T, Ning J, Xu Q, Dong J, Xi D (2020) A multiple reverse transcription PCR assay for simultaneous detection of four main viruses in kiwifruit. Eur J Plant Pathol. https://doi.org/10.1007/s10658-020-01950-w

    Article  Google Scholar 

  • Pereira AM, Lister RM, Barbara DJ, Shaner GE (1989) Relative transmissibility of barley yellow dwarf virus from sources with differing virus contents. Phytopathology 79:1353–1358

    Google Scholar 

  • Pruss G, Ge X, Shi XM, Carrington JC, Vance VB (1997) Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that trans activates replication of heterologous viruses. Plant Cell 9:859–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Querci M, Owens RA, Bartolini I, Lazarte V, Salazar L (1997) Evidence for heterologous encapsidation of potato spindle tuber viroid in particles of potato leafroll virus. J Gen Virol 78:1207–1211

    CAS  PubMed  Google Scholar 

  • Redinbaugh MG, Stewart LR (2018) Maize lethal necrosis: An emerging synergistic viral disease. Ann Rev Virol 5:301–322

    CAS  Google Scholar 

  • Rezende JAM, Müller GW (1995) Mecanismos de proteção entre os vírus e controle de viroses de vegetais por premunização. Revisão Anual de Patologia de Plantas 3:185–226

    Google Scholar 

  • Rojas MR, Gilbertson RL (2008) Emerging plant viruses: a diversity of mechanisms and opportunities. In: Roossinck MJ (ed) Plant virus evolution. Springer, Berlin Heidelberg, p 27

    Google Scholar 

  • Saade M, Aparicio F, Sánchez-Navarro JA, Herranz MC, Myrta A, Di Terlizzi B et al (2000) Simultaneous detection of three ilarviruses affecting stone fruits by non-isotopic molecular hybridization and multiplex RT-PCR. Phytopathology 96:1330–1336

    Google Scholar 

  • Safenkova IV, Pankratova GK, Zaitsev IA, Varitsev VA, Vengerov YY, Zherdev AV, Dzantiev BB (2016) Multiarray on a test strip (MATS): rapid multiplex immunodetection of priority potato pathogens. Anal Bioanal Chem. https://doi.org/10.1007/s00216-016-9463-6

    Article  PubMed  Google Scholar 

  • Safenkova IV, Panferov VG, Panferova NA, Varitsev YA, Zherdev AV, Dzantiev BD (2018) Alarm lateral flow immunoassay for detection of the total infection caused by the five viruses. Talanta. https://doi.org/10.1016/j.talanta.2018.12.004

    Article  PubMed  Google Scholar 

  • Sajid M, Kawde A-N, Daud M (2014) Designs, formats and applications of lateral flowassay: A literature review. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2014.09.001

    Article  Google Scholar 

  • Saldana J, Elena SF, Sole RV (2003) Coninfection and superinfection in RNA virus populations: a selection-mutation model. Math Biosci 183:135–160

    PubMed  Google Scholar 

  • Saldarelli P, Barbarossa L, Grieco F, Gallitelli D (1996) Digoxigenin labelled riboprobes applied to phytosanitary certification of tomato in Italy. Plant Dis 80:1343–1346

    Google Scholar 

  • Sánchez-Navarro JA, Cañizares MC, Cano EA, Pallás V (1999) Simultaneous detection of five carnation viruses by non-isotopic molecular hybridization. J Virol Methods 82:167–175

    PubMed  Google Scholar 

  • Sánchez-Navarro JA, Cooper CN, Pallás V (2018a) Polyvalent detection of members of the Potyvirus genus by molecular hybridization using a ‘Genusprobe’. Phytopathology. https://doi.org/10.1094/PHYTO-04-18-0146-R

    Article  PubMed  Google Scholar 

  • Sánchez-Navarro JA, Fiore N, Fajardo TVM, Pallás V (2018b) “Simultaneous detection of the 13 viruses and 5 viroids affecting grapevine by molecular hybridization using a unique probe or ‘polyprobe’”. In: Proceedings of the 19th conference of the international council for the study of virus and virus-like diseases of the grapevine, Santiago

  • Sanchez-Navarro JA, Corachán L, Font I et al (2019) Polyvalent detection of twelve viruses and four viroids affecting tomato by using a unique polyprobe. Eur J Plant Pathol 155:361

    CAS  Google Scholar 

  • Sanger M, Passmore B, Falk BW, Bruening G, Ding B, Lucas WJ (1994) Symptom severity of beet western yellows virus strain ST9 is conferred by the ST9-associated RNA and is not associated with virus release from the phloem. Virology 200:48–55

    CAS  PubMed  Google Scholar 

  • Sarika Akram M, Iquebal MA, Maimuddin K (2010) Prediction of MHC binding peptides and epitopes from coat protein of Mungbean yellow mosaic India virus-Ub05. J Proteom Bioinform 3:173–178

    Google Scholar 

  • Sastry KS, Zitter TA (2014) Management of virus and viroid diseases of crops in the tropics. Plant Virus Viroid Dis Trop 2:149–480

    Google Scholar 

  • Savenkov EI, Valkonen JPT (2001) Potyviral helper-component proteinase expressed in transgenic plants enhances titers of potato leafroll virus but does not alleviate its phloem limitation. Virology 283:285–293

    CAS  PubMed  Google Scholar 

  • Selvarajan R, Sheeba MM, Balasubramanian V (2011) Simultaneous detection of episomal Banana streak Mysore virus and Banana bunchy top virus using multiplex RT-PCR. Curr Sci 100:31–34

    CAS  Google Scholar 

  • Scheets K (1998) Maize chlorotic mottle machlomovirus and wheat streak mosaic rymovirus concentrations increase in the synergistic disease corn lethal necrosis. Virology 242:28–38

    CAS  PubMed  Google Scholar 

  • Sharma P, Rishi N (2007) Cotton leaf curl disease, an emerging whitefly transmissible begomovirus complex. Plant Viruses 1:127–134

    Google Scholar 

  • Sharp LP, Hou Y-M, Garrido-Ramirez ER, Guzman P, Gilbertson RL (1999) A synergistic interaction between geminivirus DNA components results in increased symptom severity and viral DNA levels in plants. Phytopathology 89:S71

    Google Scholar 

  • Singh AK, Chattopadhyay B, Chakraborty S (2012) Biology and interactions of two distinct monopartite begomoviruses and betasatellites associated with radish leaf curl disease in India. Virol J 9(1):43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Alvarez JM (2007) Effect of mixed viral infections (Potato virus Y-Potato leafroll virus) on biology and preference of vectors Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). J Econ Entomol 100:646–655

    PubMed  Google Scholar 

  • Sugiyamaa S, Masutab C, Sekiguchic H, Ueharad T, Shimurab H, Maruta Y (2008) A simple, sensitive, specific detection of mixed infection of multiple plant viruses using macroarray and microtube hybridization. J Virol Methods 153:241–244

    Google Scholar 

  • Sun S, Ahmad K, Wu X, Chen J, Fu H, Huang M, Gao S (2018) Development of quantitative real-time PCR assays for rapid and sensitive detection of two badna virus species in sugarcane. BioMed Res Int. https://doi.org/10.1155/2018/8678242

    Article  PubMed  PubMed Central  Google Scholar 

  • Syller J (2012) Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol Plant Pathol 13:204–216

    PubMed  Google Scholar 

  • Tatineni S, Graybosch RA, Hein GL, Wegulo SN, French R (2010) Wheat cultivar-specific disease synergism and alteration of virus accumulation during co-infection with Wheat streak mosaic virus and Triticum mosaic virus. Phytopathology 100:230–238

    CAS  PubMed  Google Scholar 

  • Tatineni S, Riethoven JM, Graybosch RA, French R, Mitra A (2014) Dynamics of small RNA profiles of virus and host origin in wheat cultivars synergistically infected by Wheat streak mosaic virus and Triticum mosaic virus: virus infection caused a drastic shift in the endogenous small RNA profile. PLoS ONE 9:e111577

    PubMed  PubMed Central  Google Scholar 

  • Thresh JM, Cooter RJ (2005) Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathol 54:587–614

    Google Scholar 

  • Untiveros M, Olspert A, Artola K, Firth AE, Kreuze JF, Valkonen JPT (2016) A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing. Mol Plant Pathol 17:1111–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Brunschot SL, Bergervoet JHW, Pagendam DE, de Weerdt M, Geering ADW, Drenth A et al (2014) A bead-based suspension array for the multiplexed detection of begomoviruses and their whitefly vectors. J Virol Methods 198:86–94

    PubMed  Google Scholar 

  • van der Vlugt RAA, van Raaij H, de Weerdt M, Bergervoet JHW (2015) Multiplex detection of plant pathogens through the luminex magplex bead system. In: Lacomme C (ed) Plant pathology: techniques and protocols, methods in molecular biology. Humana press, New York

    Google Scholar 

  • Vanitharani R, Chellappan P, Pita J, Fauquet C (2004) Differential roles of AC2 and AC4 of cassava Gemini viruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vance VB (1991) Replication of potato virus X RNA is altered in co-infections with potato virus Y. Virology 182:486–494

    CAS  PubMed  Google Scholar 

  • Venkataravanappa V, Reddy CNL, Jalali S, Reddy MK (2015) Association of tomato leaf curl New Delhi virus DNA-B with bhendi yellow vein mosaic virus in okra showing yellow vein mosaic disease symptom. Acta Virol 59:125–139

    CAS  PubMed  Google Scholar 

  • Vidalakis G, Garnsey SM, Bash JA, Greer GD, Gumpf DJ (2004) Efficacy of bioindexing for graft-transmissible citrus pathogens in mixed infections. Plant Dis 88:1328–1334

    CAS  PubMed  Google Scholar 

  • Wang Y, Lee KC, Gaba V, Wong SM, Palukaitis P, Gal-On A (2004) Breakage of resistance to cucumber mosaic virus by co-infection with Zucchini yellow mosaic virus: enhancement of CMV accumulation independent of symptom expression. Adv Virol 149:379–396

    CAS  Google Scholar 

  • Wang H, Xu D, Pu L, Zhou G (2014) Southern rice black-streaked dwarf virus alters insect vectors’ host orientation preferences to enhance spread and increase Rice ragged stunt virus co-infection. Phytopathology 104:196–201

    CAS  PubMed  Google Scholar 

  • Wintermantel WM, Cortez AA, Anchieta AG, Gulati-Sakhuja A, Hladky LL (2008) Co-infection by two criniviruses alters accumulation of each virus in a host-specific manner and influences efficiency of virus transmission. Phytopathology 98:1340–1345

    PubMed  Google Scholar 

  • Wege C, Siegmund D (2007) Synergism of a DNA and an RNA virus: enhanced tissue infiltration of the begomovirus Abutilon mosaic virus(AbMV) mediated by Cucumber mosaic virus (CMV). Virology 357:10–28

    CAS  PubMed  Google Scholar 

  • Wolf YI, Kazlauskas D, Iranzo J, Lucia-Sanz A, Kuhn JH, Krupovic M, Dolja VV, Koonin EV (2018) Origins and evolution of the global RNA virome. MBio 9:e02329–e2418

    PubMed  PubMed Central  Google Scholar 

  • Xiong L, Gao L, Liu Q, Xia J, Han X, Liu Y (2013) A simple, rapid and visual antibody array for the simultaneous detection of multiple plant pathogens. Anal Methods 5:2413

    CAS  Google Scholar 

  • Yeh SD, Cheng YH (1989) Use of resistant Cucumis metuliferus for selection of nitrous-acid induced attenuated strains of papaya ringspot virus. Phytopathology 79:1257–1261

    Google Scholar 

  • Zaidi SS, Shafiq M, Amin I, Scheffler BE, Scheffler JA, Briddon RW, Mansoor S (2016) Frequent occurrence of Tomato leaf curl New Delhi virus in cotton leaf curl disease affected cotton in Pakistan. PLoS ONE 11:e0155520

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Borth W, Lin B, Melzer M, Shen H, Pu X, Sun D, Nelson S, Hu J (2018) Multiplex detection of three banana viruses by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Trop Plant Pathol. https://doi.org/10.1007/s40858-018-0257-6

    Article  Google Scholar 

  • Ziebell H, Carr JP (2010) Cross-protection: a century of mystery. Adv Virus Res 76:211–264

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Corresponding author is highly thankful to all co-authors for their contribution and valuable time

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankhuri Singhal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, P., Nabi, S.U., Yadav, M.K. et al. Mixed infection of plant viruses: diagnostics, interactions and impact on host. J Plant Dis Prot 128, 353–368 (2021). https://doi.org/10.1007/s41348-020-00384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-020-00384-0

Keywords

Navigation