Skip to main content
Log in

Resistance Exercise for the Prevention and Treatment of Pediatric Dynapenia

  • Review Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Temporal trends of youth muscular fitness (i.e., muscular strength, muscular power and local muscular endurance) indicate that contemporary children and adolescents are weaker and slower than previous generations. Consequently, this generation of millennials appear to be just as vulnerable as older adults to the inevitable consequences of muscle disuse and neuromuscular dysfunction. The modern-day construct of pediatric dynapenia describes an identifiable and treatable condition in youth characterized by low levels of muscular strength and power and consequent physical and psychosocial limitations not caused by neurologic or muscular disease. An interaction of modifiable physical and psychosocial factors can influence the development and progression of pediatric dynapenia. Without structured interventions that target strength deficits and build strength reserves in a supporting environment, the divergence in performance between weaker and stronger children may persist into adolescence because weaker youth may be unable to break through a so-called strength barrier. Regular participation in a well-designed youth resistance training program provides an opportunity for youth to enhance their health and fitness while acquiring the physical skills and behaviors that support an active lifestyle. New insights have highlighted the importance of initiating strength-building interventions early in life to optimize performance gains in other important components of physical fitness. Developmentally appropriate resistance training should be integrated into school- and community-based youth fitness programs and strength-building activities should take a more prominent position in public health physical activity recommendations for children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albon H, Hamlin M, Ross J. Secular trends and distributional changes in health and fitness performance variables of 10–14-year-old children in New Zealand between 1991 and 2003. Br J Sports Med. 2010;44(4):263–9.

    CAS  PubMed  Google Scholar 

  2. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 10th ed. Baltimore: Lippincott, Williams and Wilkins; 2018.

    Google Scholar 

  3. Ao D, Wu F, Yun C, Zheng X. Trends in physical fitness among 12-year-old children in urban and rural areas during the social transformation period in China. J Adolesc Health. 2019;64(2):250–7.

    PubMed  Google Scholar 

  4. Aubert S, Barnes J, Abdeta C, Abi Nader P, Adeniyi A, Aguilar-Farias N, Tremblay M. Global matrix 3.0 physical activity report card grades for children and Youth: results and analysis from 49 countries. J Phys Activity Health. 2018;15(S2):S251–73.

    Google Scholar 

  5. Augustsson S, Ageberg E. Weaker lower extremity muscle strength predicts traumatic knee injury in youth female but not male athletes. BMJ Open Sport Exerc Med. 2017;3(1):e000222.

    Google Scholar 

  6. Bea J, Blew R, Howe C, Hetherington-Rauth M, Going S. Resistance training effects on metabolic function among youth: a systematic review. Pediatric Exerc Sci. 2017;29(3):297–315.

    Google Scholar 

  7. Behm D, Young J, Whitten J, Reid J, Quigley P, Low J, Granacher U. Effectiveness of traditional strength versus power training on muscle strength, power and speed with youth: a systematic review and meta-analysis. Front Physiol. 2017;8:423. https://doi.org/10.3389/fphys.2017.00423.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Behringer M, Vom Heede A, Matthews M, Mester J. Effects of strength training on motor performance skills in children and adolescents: a meta-analysis. Pediatric Exerc Sci. 2011;23(2):186–206.

    Google Scholar 

  9. Bergeron M, Mountjoy M, Armstrong N, Chia M, Côté J, Emery C, Engebretsen L. International Olympic Committee consensus statement on youth athletic development. Br J Sports Med. 2015;49(13):843–51.

    PubMed  Google Scholar 

  10. Boland A, Gibson T, Lu L, Kaste S, DeLany J, Partin R, Ness K. Dietary protein intake and lean muscle mass in Survivors of childhood acute lymphoblastic leukemia: report from the St. Jude lifetime cohort study. Phys Ther. 2016;96(7):1029–38.

    PubMed  PubMed Central  Google Scholar 

  11. Castro-Piñero J, Perez-Bey A, Cuenca-Garcia M, Cabanas-Sanchez V, Gómez-Martínez S, Veiga O. Muscle fitness cut points for early assessment of cardiovascular risk in children and adolescents. J Pediatr. 2019;e3:134–41.

    Google Scholar 

  12. Chulvi-Medrano I, Faigenbaum A, Cortell-Tormo J. Can resistance training to prevent and control pediatric dynapenia? Retos. 2017;33:298–307.

    Google Scholar 

  13. Clark B, Manini T. What is dynapenia? Nutrition. 2012;28(5):495–503.

    PubMed  PubMed Central  Google Scholar 

  14. Collins H, Booth J, Duncan A, Fawkner S. The effect of resistance training interventions on fundamental movement skills in youth: a meta-analysis. Sports Medicine Open. 2019;5(1):17.

    PubMed  PubMed Central  Google Scholar 

  15. Collins H, Booth J, Duncan A, Fawkner S, Niven A. The effect of resistance training Interventions on ‘The Self’ in youth: a systematic review and meta-analysis. Sports Med Open. 2019;5(1):29.

    PubMed  PubMed Central  Google Scholar 

  16. Collins H, Fawkner S, Booth J, Duncan A. The effect of resistance training interventions on weight status in youth: a meta-analysis. Sports Med Open. 2018;4(1):41.

    PubMed  PubMed Central  Google Scholar 

  17. Corbin C, Le Masurier G. Fitness for life. 6th ed. Champaign: Human Kinetics; 2014.

    Google Scholar 

  18. Costa A, Costa M, Reis A, Ferreira S, Martins J, Pereira A. Secular trends in anthropometrics and physical fitness of young Portuguese school-aged children. Acta Med Port. 2017;30(2):108–14.

    PubMed  Google Scholar 

  19. De Meester A, Stodden D, Goodway J, True L, Brian A, Ferkel R, Haerens L. Identifying a motor proficiency barrier for meeting physical activity guidelines in children. J Sci Med Sport. 2018;21(1):58–62.

    PubMed  Google Scholar 

  20. DiSanti J, Lisee C, Erickson K, Bell D, Shingles M, Kuenze C. Perceptions of rehabilitation and return to sport among high school athletes with anterior cruciate ligament reconstruction: a qualitative research study. J Orthopedic Sports Phys Ther. 2018;48(12):951–9.

    Google Scholar 

  21. Dos Santos F, Prista A, Gomes T, Daca T, Madeira A, Katzmarzyk P, Maia J. Secular trends in physical fitness of Mozambican school-aged children and adolescents. Am J Hum Biol. 2015;27(2):201–6.

    PubMed  Google Scholar 

  22. Ekblom O, Oddsson K, Ekblom B. Health-related fitness in Swedish adolescents between 1987 and 2001. Acta Paediatr. 2004;93(5):681–6.

    CAS  PubMed  Google Scholar 

  23. Estevan I, García-Massó X, Molina García J, Barnett L. Identifying profiles of children at risk of being less physically active: an exploratory study using a self-organised map approach for motor competence. J Sports Sci. 2019;37(12):1356–64.

    PubMed  Google Scholar 

  24. Faigenbaum A, Bruno L. A fundamental approach for treating pediatric dynapenia in kids. ACSM’s Health Fitness J. 2017;21(4):18–24.

    Google Scholar 

  25. Faigenbaum A, Lloyd R, MacDonald J, Myer G. Citius, Altius, Fortius: beneficial effects of resistance training for young athletes: narrative review. Br J Sports Med. 2016;50(1):3–7.

    PubMed  Google Scholar 

  26. Faigenbaum A, Lloyd R, Myer G. Youth resistance training: past practices, new perspectives and future directions. Pediatric Exerc Sci. 2013;25:591–604.

    Google Scholar 

  27. Faigenbaum A, MacDonald J. Dynapenia: it’s not just for grown-ups anymore. Acta Paediatr. 2017;106:696–7.

    PubMed  Google Scholar 

  28. Faigenbaum A, McDonald J, Haff G. Are young athletes strong enough for sport? DREAM On. Curr Sports Med Rep. 2019;18(1):6–8.

    PubMed  Google Scholar 

  29. Faigenbaum A, Rial Rebullido T. Understanding physical literacy in youth. Strength Cond J. 2018;40(6):90–4.

    Google Scholar 

  30. Forbes G. Lean body mass and fat in obese children. Pediatrics. 1964;34:309–14.

    Google Scholar 

  31. Fragala M, Cadore E, Dorgo S, Izquierdo M, Kraemer W, Peterson M, Ryan E. Resistance training for older adults. Position statement from the National Strength and Conditioning Association. J Strength Cond Res. 2019;33(8):2019–52.

    PubMed  Google Scholar 

  32. Fransen J, Deprez D, Pion J, Tallir I, D’Hondt E, Vaeyens R, Philippaerts R. Changes in physical fitness and sports participation among children with different levels of motor competence: a 2-year longitudinal study. Pediatric Exerc Sci. 2014;26(1):1–21.

    Google Scholar 

  33. Fraser B, Blizzard L, Cleland V, Schmidt MD, Smith KJ, Gall SL, Dwyer T, Venn AJ, Magnussen CG. Factors associated with persistently high muscular power from childhood to adulthood. Med Sci Sports Exerc. 2019. https://doi.org/10.1249/MSS.0000000000002108.

    Article  PubMed  Google Scholar 

  34. Fraser B, Schmidt M, Huynh Q, Dwyer T, Venn A, Magnussen C. Tracking of muscular strength and power from youth to young adulthood: longitudinal findings from the Childhood Determinants of Adult Health Study. J Sci Med Sport. 2017;20(10):927–31.

    PubMed  Google Scholar 

  35. García-Hermoso A, Ramírez-Campillo R, Izquierdo M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Med. 2019;49(7):1079–94.

    Google Scholar 

  36. Gomes T, Dos Santos F, Katzmarzyk P, Maia J. Active and strong: physical activity, muscular strength, and metabolic risk in children. Am J Hum Biol. 2017;29(1):e22904.

    Google Scholar 

  37. Hardy L, Merom D, Thomas M, Peralta L. 30-year changes in Australian children’s standing broad jump: 1985–2015. J Sci Med Sport. 2018;21(10):1057–61.

    PubMed  Google Scholar 

  38. Henriksson H, Henriksson P, Tynelius P, Ortega F. Muscular weakness in adolescence is associated with disability 30 years later: a population-based cohort study of 1.2 million men. Br J Sports Med. 2018. https://doi.org/10.1136/bjsports-2017-098723.

    Article  PubMed  Google Scholar 

  39. Hulteen R, Smith J, Morgan P, Barnett L, Hallal P, Colyvas K, Lubans D. Global participation in sport and leisure-time physical activities: a systematic review and meta-analysis. Prev Med. 2017;95:14–25.

    PubMed  Google Scholar 

  40. Huotari P, Nupponen H, Laakso L, Kujala U. Secular trends in muscular fitness among Finnish adolescents. Scand J Public Health. 2010;38(7):739–47.

    PubMed  Google Scholar 

  41. Jochem C, Leitzmann M, Volaklis K, Aune D, Strasser B. Association between muscular strength and mortality in clinical populations: a systematic review and meta-analysis. J Am Med Dir Assoc. 2019. https://doi.org/10.1016/j.jamda.2019.05.015.

    Article  PubMed  Google Scholar 

  42. Katzmarzyk P, Denstel K, Beals K, Carlson J, Crouter S, McKenzie T, Wright C. Results from the United States 2018 Report Card on physical activity for children and youth. J Phys Activity Health. 2018;15(S2):S422–4.

    Google Scholar 

  43. Kori S, Miller R, Todd D. Kinesiophobia: a new view of chronic pain behavior. Pain Manag. 1990;3:35–43.

    Google Scholar 

  44. Lauersen J, Andersen T, Andersen L. Strength training as superior, dose-dependent and safe prevention of acute and overuse sports injuries: a systematic review, qualitative analysis and meta-analysis. Br J Sports Med. 2018;52(24):1557–63.

    PubMed  Google Scholar 

  45. Laurson K, Saint-Maurice P, Welk G, Eisenmann J. Reference curves for field tests of musculoskeletal fitness in U.S. children and adolescents: the 2012 NHANES National Youth Fitness Survey. J Strength Cond Res. 2017;31(8):2075–82.

    PubMed  Google Scholar 

  46. Lesinski M, Prieske O, Granacher U. Effects and dose–response relationships of resistance training on physical performance in youth athletes: a systematic review and meta-analysis. Br J Sports Med. 2016;50(13):781–95.

    PubMed  Google Scholar 

  47. Lloyd R, Cronin J, Faigenbaum A, Haff G, Howard R, Kraemer W, Oliver J. The National Strength and Conditioning Association position statement on long-term athletic development. J Strength Cond Res. 2016;30(6):1491–509.

    PubMed  Google Scholar 

  48. Lloyd R, Faigenbaum A, Stone M, Oliver J, Jeffreys I, Moody J, Myer G. Position statement on youth resistance training: the 2014 International Consensus. Br J Sports Med. 2014;48(7):498–505.

    PubMed  Google Scholar 

  49. Lloyd R, Oliver J, editors. Strength and conditioning for young athletes. 2nd ed. Oxon: Routledge; 2019.

    Google Scholar 

  50. Logan K, Cuff S, Council on Sports Medicine and Fitness. Organized sports for children, preadolescents, and adolescents. Pediatrics. 2019. https://doi.org/10.1542/peds.2019-0997.

    Article  PubMed  Google Scholar 

  51. Luque-Suarez A, Martinez-Calderon J, Falla D. Role of kinesiophobia on pain, disability and quality of life in people suffering from chronic musculoskeletal pain: a systematic review. Br J Sports Med. 2019;53(9):554–9.

    PubMed  Google Scholar 

  52. Luz C, Rodrigues L, Meester A, Cordovil R. The relationship between motor competence and health-related fitness in children and adolescents. PLoS One. 2017;12(6):e0179993.

    PubMed  PubMed Central  Google Scholar 

  53. Malina R, Bouchard C, Bar-Or O. Growth, maturation and physical activity. 2nd ed. Champaign: Human Kinetics; 2004.

    Google Scholar 

  54. Martínez-Gómez D, Welk G, Puertollano M, Del-Campo J, Moya J, Marcos A. Associations of physical activity with muscular fitness in adolescents. Scandinavian J Med Sci Sport. 2011;21(2):310–7.

    Google Scholar 

  55. Matton L, Duvigneaud N, Wijndaele K, Philippaerts R, Duquet W, Beunen G, Lefevre J. Secular trends in anthropometric characteristics, physical fitness, physical activity, and biological maturation in Flemish adolescents between 1969 and 2005. Am J Hum Biol. 2007;19(3):345–57.

    PubMed  Google Scholar 

  56. Micheli L. Pediatric and Adolescent Sports Medicine. Philadelphia: Lippincott Williams & Wilkins; 1984.

    Google Scholar 

  57. Moliner-Urdiales D, Ruiz J, Ortega FB, Jiménez-Pavón D, Vicente-Rodriguez G, Rey-López J, AVENA and HELENA Study Groups. Secular trends in health-related physical fitness in Spanish adolescents: the AVENA and HELENA studies. J Sci Med Sport. 2010;13(6):584–8.

    CAS  PubMed  Google Scholar 

  58. Morales J, Padilla J, Valenzuela P, Santana-Sosa E, Rincón-Castanedo C, Santos-Lozano A, Lucia A. Inhospital exercise training in children with cancer: does it work for all? Front Pediatr. 2018;6:404.

    PubMed  PubMed Central  Google Scholar 

  59. Müllerová D, Langmajerová J, Sedláček P, Dvořáková J, Hirschner T, Weber Z, Derflerová Brázdová Z. Dramatic decrease in muscular fitness in Czech schoolchildren over the last 20 years. Cent Eur J Public Health. 2015;23:S9–13.

    PubMed  Google Scholar 

  60. Myer G, Faigenbaum A, Chu D, Falkel J, Ford K, Best T, Hewett T. Integrative training for children and adolescents: techniques and practices for reducing sports-related injuries and enhancing athletic performance. Phys Sports Med. 2011;39(1):74–84.

    Google Scholar 

  61. Myer G, Faigenbaum A, Edwards E, Clark J, Best T, Sallis R. 60 minutes of what? A developing brain perspective for activation children with an integrative approach. Br J Sports Med. 2015;49(12):1510–6.

    PubMed  Google Scholar 

  62. Orsso C, Tibaes J, Oliveira C, Rubin D, Field C, Heymsfield S, Prado CM, Haqq A. Low muscle mass and strength in pediatrics patients: Why should we care? Clin Nutr. 2019. https://doi.org/10.1016/j.clnu.2019.04.012.

    Article  PubMed  Google Scholar 

  63. Ortega F, Silventoinen K, Tynelius P, Rasmussen F. Muscular strength in male adolescents and premature death: cohort study of one million participants. BMJ. 2012;345:e7279.

    PubMed  PubMed Central  Google Scholar 

  64. Pearson N, Haycraft E, Johnston J, Atkin A. Sedentary behaviour across the primary-secondary school transition: a systematic review. Prev Med. 2017;94:40–7.

    PubMed  Google Scholar 

  65. Pesce C, Faigenbaum A, Goudas M, Tomporowski P. Coupling our plough of thoughtful moving to the star of children’s right to play. In: Meeusen R, Schaefer S, Tomporowski P, Bailey R, editors. Physical acitivty and education achievement. Oxon: Routledge; 2018. p. 247–74.

    Google Scholar 

  66. Poitras V, Gray C, Borghese M, Carson V, Chaput J, Janssen I, Tremblay M. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41:S197–239.

    PubMed  Google Scholar 

  67. Race D, Sims-Gould J, Tucker L, Duffy C, Feldman D, Gibbon M, McKay H. ‘It might hurt, but you have to push through the pain’: perspectives on physical activity from children with juvenile idiopathic arthritis and their parents. J Child Health Care. 2016;20(4):428–36.

    PubMed  Google Scholar 

  68. Rodrigues de Lima T, Custódio Martins P, Henrique Guerra P, Augusto Santos Silva D. Muscular fitness and cardiovascular risk factors in children and adolescents: A systematic review. J Strength Cond Res. 2018. https://doi.org/10.1519/JSC.0000000000002840.

    Article  Google Scholar 

  69. Runhaar J, Collard DC, Singh A, Kemper HC, van Mechelen W, Chinapaw M. Motor fitness in Dutch youth: differences over a 26-year period (1980–2006). J Sci Med Sport. 2010;13:323–8.

    CAS  PubMed  Google Scholar 

  70. Sandercock G, Cohen D. Temporal trends in muscular fitness of English 10-year-olds 1998–2014: an allometric approach. J Sci Med Sport. 2019;22(2):201–5.

    PubMed  Google Scholar 

  71. Seefeldt V. Developmental motor patterns: Implications for elementary school physical education. In: Nadeau K, Newell K, Roberts G, editors. Psychology of motor behavior and sport. Champaign: Human Kinetics; 1980. p. 314–23.

    Google Scholar 

  72. Smith J, Eather N, Weaver R, Riley N, Beets M, Lubans D. Behavioral correlates of muscular fitness in children and adolescents: a systematic review. Sports Med. 2019;49(6):887–904.

    Article  PubMed  Google Scholar 

  73. Thompson W. Worldwide survey of fitness trends for 2019. ACSM’s Health Fitness J. 2018;22(6):10–7.

    Google Scholar 

  74. Tremblay M, Shields M, Laviolette M, Craig C, Janssen I, Connor S. Fitness of Canadian children and youth: results from the 2007–2009 Canadian Health Measures Survey. Health Rep. 2010;21(1):7–20.

    PubMed  Google Scholar 

  75. Tyler R, Mackintosh K, Palmer A, Jones A, Stratton G, Brophy S. Ten-year secular changes in selected health and fitness parameters of 10–11 years old Swansea school children—2003–2013. Adv Obes Weight Manag Control. 2015;3(5):267–71.

    Google Scholar 

  76. United States Department of Health and Human Services. Physical Activity Guidelines for Americans. 2nd ed. Washington, DC: Department of Health and Human Services; 2018.

    Google Scholar 

  77. Utesch T, Bardid F, Büsch D, Strauss B. The relationship between motor competence and physical fitness from early childhood to early adulthood: a meta-analysis. Sports Med. 2019;49(4):541–51.

    PubMed  Google Scholar 

  78. Venckunas T, Emeljanovas A, Mieziene B, Volbekiene V. Secular trends in physical fitness and body size in Lithuanian children and adolescents between 1992 and 2012. J Epidemiol Commun Health. 2017;71(2):181–7.

    Google Scholar 

  79. Westcott W. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep. 2012;11(4):209–16.

    PubMed  Google Scholar 

  80. Whitehead M. Definition of physical literacy and clarification of related issues. ICSSPE Bull. 2013;65(October):28–42.

    Google Scholar 

  81. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475–82.

    CAS  PubMed  Google Scholar 

  82. Zwolski C, Quatman-Yates C, Paterno M. Resistance training in youth: laying the foundation for injury prevention and physical literacy. Sports Health. 2017;9(5):436–43.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avery D. Faigenbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faigenbaum, A.D., Rebullido, T.R., Peña, J. et al. Resistance Exercise for the Prevention and Treatment of Pediatric Dynapenia. J. of SCI. IN SPORT AND EXERCISE 1, 208–216 (2019). https://doi.org/10.1007/s42978-019-00038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-00038-0

Keywords

Navigation