Skip to main content

Advertisement

Log in

Presence of Rare Variants is Associated with Poorer Survival in Chinese Patients with Amyotrophic Lateral Sclerosis

  • Article
  • Published:
Phenomics Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with phenotypic and genetic heterogeneity. Recent studies have suggested an oligogenic basis of ALS, in which the co-occurrence of two or more genetic variants has additive or synergistic deleterious effects. To assess the contribution of possible oligogenic inheritance, we profiled a panel of 43 relevant genes in 57 sporadic ALS (sALS) patients and eight familial ALS (fALS) patients from five pedigrees in east China. We filtered rare variants using the combination of the Exome Aggregation Consortium, the 1000 Genomes and the HuaBiao Project. We analyzed patients with multiple rare variants in 43 known ALS causative genes and the genotype–phenotype correlation. Overall, we detected 30 rare variants in 16 different genes and found that 16 of the sALS patients and all the fALS patients examined harbored at least one variant in the investigated genes, among which two sALS and four fALS patients harbored two or more variants. Of note, the sALS patients with one or more variants in ALS genes had worse survival than the patients with no variants. Typically, in one fALS pedigree with three variants, the family member with three variants (Superoxide dismutase 1 (SOD1) p.V48A,  Optineurin (OPTN) p.A433V and TANK binding kinase 1 (TBK1) p.R573H) exhibited much more severe disease phenotype than the member carrying one variant (TBK1 p.R573H). Our findings suggest that rare variants could exert a negative prognostic effect, thereby supporting the oligogenic inheritance of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated from the statistical analyses during the current study are available from the corresponding author on reasonable request.

Abbreviations

ACMG:

The American College of Medical Genetics and Genomics

ALS:

Amyotrophic lateral sclerosis

ALS2:

Amyotrophic lateral sclerosis 2

ALSdb:

ALS data browser

ALSod:

Amyotrophic Lateral Sclerosis online Database

ANG:

Angiogenin

ANXA11:

Annexin A11

ATXN2:

Ataxin 2

C9orf72:

Chromosome 9 open reading frame 72

C21orf2:

Cilia- and flagella-associated protein 410

CAMTA1:

Calmodulin-binding transcription activator 1

CCNF:

Cyclin F

CHCHD10:

Coiled-coil-helix-coiled-coil-helix domain containing 10

CHMP2B:

Charged multivesicular body protein 2B

CYLD:

Cylindromatosis

DCTN1:

Dynactin subunit 1

DNAJC7:

DnaJ heat shock protein family (Hsp40) member C7

ELP3:

Elongator acetyltransferase complex subunit 3

EPHA4:

Ephrin type-A receptor 4

ERBB4:

Erb-B2 receptor tyrosine kinase 4

ExAC:

The Exome Aggregation Consortium

fALS:

Familial amyotrophic lateral sclerosis

FTD:

Frontotemporal dementia

FIG4:

FIG4 phosphoinositide 5-phosphatase

FUS:

Fused in sarcoma

GLT8D1:

Glycosyltransferase 8 domain containing 1

HNRNPA1:

Heterogeneous nuclear ribonucleoprotein A1

HNRNPA2B1:

Heterogeneous nuclear ribonucleoprotein A2/B1

KIF5A:

Kinesin family member 5A

LGALSL:

Lectin galactoside-binding-like protein

MATR3:

Matrin 3

NEFH:

Neurofilament heavy chain

NEK1:

NIMA-related kinase 1

OMIM:

Online Mendelian inheritance in man

OPTN:

Optineurin

PFN1:

Profilin 1

PRPH:

Peripherin

sALS:

Sporadic amyotrophic lateral sclerosis

SETX:

Senataxin

SIGMAR1:

Sigma non-opioid intracellular receptor 1

SNP:

Single-nucleotide polymorphisms

SOD1:

Superoxide dismutase 1

SPG11:

Spastic paraplegia 11

SPTLC1:

Serine palmitoyltransferase long chain base subunit 1

SQSTM1:

Sequestosome 1

TARDBP:

TAR DNA-binding protein

TBK1:

TANK-binding kinase 1

TIA1:

Cytotoxic granule-associated RNA-binding protein

TUBA4A:

Tubulin Alpha 4a

UBQLN2:

Ubiquilin 2

UNC13A:

Unc-13 Homolog A

VAPB:

Vesicle-associated membrane protein-associated protein B/C

VCP:

Valosin-containing protein

WES:

Whole-exome sequencing

References

  • Al-Chalabi A, Fang F, Hanby MF, Leigh PN, Shaw CE, Ye W, Rijsdijk F (2010) An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosur Ps 81(12):1324–1326. https://doi.org/10.1136/jnnp.2010.207464

    Article  CAS  Google Scholar 

  • Al-Chalabi A, van den Berg LH, Veldink J (2017) Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13(2):96–104. https://doi.org/10.1038/nrneurol.2016.182

    Article  CAS  PubMed  Google Scholar 

  • Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9(11):617–628. https://doi.org/10.1038/nrneurol.2013.203

    Article  CAS  PubMed  Google Scholar 

  • Black HA, Leighton DJ, Cleary EM, Rose E, Stephenson L, Colville S, Ross D, Warner J, Porteous M, Gorrie GH, Swingler R, Goldstein D, Harms MB, Connick P, Pal S, Aitman TJ, Chandran S (2017) Genetic epidemiology of motor neuron disease-associated variants in the Scottish population. Neurobiol Aging 51:178. https://doi.org/10.1016/j.neurobiolaging.2017.04.019

    Article  PubMed Central  Google Scholar 

  • Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299. https://doi.org/10.1080/146608200300079536

    Article  CAS  PubMed  Google Scholar 

  • Cady J, Allred P, Bali T, Pestronk A, Goate A, Miller TM, Mitra RD, Ravits J, Harms MB, Baloh RH (2015) Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes. Ann Neurol 77(1):100–113. https://doi.org/10.1002/ana.24306

    Article  CAS  PubMed  Google Scholar 

  • Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang QL, Krueger BJ, Ren Z, Keebler J, Han YJ, Levy SE, Boone BE, Wimbish JR, Waite LL, Jones AL, Carulli JP, Day-Williams AG, Staropoli JF, Xin WW, Chesi A, Raphael AR, McKenna-Yasek D, Cady J, de Jong JMBV, Kenna KP, Smith BN, Topp S, Miller J, Gkazi A, Al-Chalabi A, van den Berg LH, Veldink J, Silani V, Ticozzi N, Shaw CE, Baloh RH, Appel S, Simpson E, Lagier-Tourenne C, Pulst SM, Gibson S, Trojanowski JQ, Elman L, McCluskey L, Grossman M, Shneider NA, Chung WK, Ravits JM, Glass JD, Sims KB, Van Deerlin VM, Maniatis T, Hayes SD, Ordureau A, Swarup S, Landers J, Baas F, Allen AS, Bedlack RS, Harper JW, Gitler AD, Rouleau GA, Brown R, Harms MB, Cooper GM, Harris T, Myers RM, Goldstein DB, Consortium FS (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347(6229):1436–1441. https://doi.org/10.1126/science.aaa3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Majo M, Topp SD, Smith BN, Nishimura AL, Chen HJ, Gkazi AS, Miller J, Wong CH, Vance C, Baas F, ten Asbroek ALMA, Kenna KP, Ticozzi N, Redondo AG, Esteban-Perez J, Tiloca C, Verde F, Duga S, Morrison KE, Shaw PJ, Kirby J, Turner MR, Talbot K, Hardiman O, Glass JD, de Belleroche J, Gellera C, Ratti A, Al-Chalabi A, Brown RH, Silani V, Landers JE, Shaw CE (2018) ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiol Aging 71:266. https://doi.org/10.1016/j.neurobiolaging.2018.06.015

    Article  CAS  PubMed Central  Google Scholar 

  • Dols-Icardo O, Garcia-Redondo A, Rojas-Garcia R, Borrego-Hernandez D, Illan-Gala I, Munoz-Blanco JL, Rabano A, Cervera-Carles L, Juarez-Rufian A, Spataro N, De Luna N, Galan L, Cortes-Vicente E, Fortea J, Blesa R, Grau-Rivera O, Lleo A, Esteban-Perez J, Gelpi E, Clarimon J (2018) Analysis of known amyotrophic lateral sclerosis and frontotemporal dementia genes reveals a substantial genetic burden in patients manifesting both diseases not carrying the C9orf72 expansion mutation. J Neurol Neurosur Ps 89(2):162–168. https://doi.org/10.1136/jnnp-2017-316820

    Article  Google Scholar 

  • Dong SQ, Liu XN, Yang WB, Zhou YN, Wang JC, Chen XJ (2020) An exon 5 mutation (c.425G > C, p.Gly141Ala) in the SOD1 gene in a Chinese family associated with incomplete penetrance. Amyotroph Lat Scl Fr 21(5–6):473–476. https://doi.org/10.1080/21678421.2020.1738496

    Article  CAS  Google Scholar 

  • Elshafey A, Lanyon WG, Connor JM (1994) Identification of a new missense point mutation in exon-4 of the Cu/Zn superoxide-dismutase (Sod-1) gene in a family with amyotrophic-lateral-sclerosis. Hum Mol Genet 3(2):363–364. https://doi.org/10.1093/hmg/3.2.363

    Article  CAS  PubMed  Google Scholar 

  • Farhan SMK, Gendron TF, Petrucelli L, Hegele RA, Strong MJ (2018) OPTN p.Met468Arg and ATXN2 intermediate length polyQ extension in families with C9orf72 mediated amyotrophic lateral sclerosis and frontotemporal dementia. Am J Med Genet B 177(1):75–85. https://doi.org/10.1002/ajmg.b.32606

    Article  CAS  Google Scholar 

  • Fogh I, Ratti A, Gellera C, Lin K, Tiloca C, Moskvina V, Corrado L, Soraru G, Cereda C, Corti S, Gentilini D, Calini D, Castellotti B, Mazzini L, Querin G, Gagliardi S, Del Bo R, Conforti FL, Siciliano G, Inghilleri M, Sacca F, Bongioanni P, Penco S, Corbo M, Sorbi S, Filosto M, Ferlini A, Di Blasio AM, Signorini S, Shatunov A, Jones A, Shaw PJ, Morrison KE, Farmer AE, Van Damme P, Robberecht W, Chi A, Traynor BJ, Sendtner M, Melki J, Meininger V, Hardiman O, Andersen PM, Leigh NP, Glass JD, Overste D, Diekstra FP, Veldink JH, van Es MA, Shaw CE, Weale ME, Lewis CM, Williams J, Brown RH, Landers JE, Ticozzi N, Ceroni M, Pegoraro E, Comi GP, DAlfonso S S, van den Berg LH, Taroni F, Al-Chalabi A, Powell J, Silani V, Collaborators SC (2014) A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 23(8):2220–2231. https://doi.org/10.1093/hmg/ddt587

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa T, Homma K, Yamaguchi N, Kadowaki H, Tsuburaya N, Naguro I, Matsuzawa A, Takeda K, Takahashi Y, Goto J, Tsuji S, Nishitoh H, Ichijo H (2012) A novel monoclonal antibody reveals a conformational alteration shared by amyotrophic lateral sclerosis-linked SOD1 mutants. Ann Neurol 72(5):739–749. https://doi.org/10.1002/ana.23668

    Article  CAS  PubMed  Google Scholar 

  • Gentile G, Perrone B, Morello G, Simone IL, Ando S, Cavallaro S, Conforti FL (2021) Individual oligogenic background in p.D91A-SOD1 amyotrophic lateral sclerosis patients. Genes (Basel) 12(12):1843. https://doi.org/10.3390/genes12121843

    Article  CAS  PubMed  Google Scholar 

  • Giannoccaro MP, Bartoletti-Stella A, Piras S, Pession A, De Massis P, Oppi F, Stanzani-Maserati M, Pasini E, Baiardi S, Avoni P, Parchi P, Liguori R, Capellari S (2017) Multiple variants in families with amyotrophic lateral sclerosis and frontotemporal dementia related to C9orf72 repeat expansion: further observations on their oligogenic nature. J Neurol 264(7):1426–1433. https://doi.org/10.1007/s00415-017-8540-x

    Article  CAS  PubMed  Google Scholar 

  • Giau VV, Bagyinszky E, Yang YS, Youn YC, An SSA, Kim SY (2019) Genetic analyses of early-onset Alzheimer’s disease using next generation sequencing. Sci Rep 9(1):8368. https://doi.org/10.1038/s41598-019-44848-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goutman SA, Hardiman O, Al-Chalabi A, Chio A, Savelieff MG, Kiernan MC, Feldman EL (2022a) Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol 21(5):480–493. https://doi.org/10.1016/S1474-4422(21)00465-8

    Article  CAS  PubMed  Google Scholar 

  • Goutman SA, Hardiman O, Al-Chalabi A, Chio A, Savelieff MG, Kiernan MC, Feldman EL (2022b) Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 21(5):465–479. https://doi.org/10.1016/S1474-4422(21)00414-2

    Article  CAS  PubMed  Google Scholar 

  • Hao M, Pu WL, Li Y, Wen SQ, Sun C, Ma YY, Zheng HX, Chen XD, Tan JZ, Zhang GQ, Zhang MH, Xu SH, Wang Y, Li H, Wang JC, Jin L (2021) The HuaBiao project: whole-exome sequencing of 5000 Han Chinese individuals. J Genet Genomics 48(11):1032–1035. https://doi.org/10.1016/j.jgg.2021.07.013

    Article  PubMed  Google Scholar 

  • Keller MF, Ferrucci L, Singleton AB, Tienari PJ, Laaksovirta H, Restagno G, Chiò A, Traynor BJ, Nalls MA (2014) Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 71(10):1123–1134. https://doi.org/10.1001/jamaneurol.2014.2914

    Article  Google Scholar 

  • Keogh MJ, Wei W, Aryaman J, Wilson I, Talbot K, Turner MR, McKenzie CA, Troakes C, Attems J, Smith C, Al Sarraj S, Morris CM, Ansorge O, Pickering-Brown S, Jones N, Ironside JW, Chinnery PF (2018) Oligogenic genetic variation of neurodegenerative disease genes in 980 postmortem human brains. J Neurol Neurosurg Psychiatry 89(8):813–816. https://doi.org/10.1136/jnnp-2017-317234

    Article  Google Scholar 

  • Kim HJ, Oh KW, Kwon MJ, Oh SI, Park JS, Kim YE, Choi BO, Lee S, Ki CS, Kim SH (2016) Identification of mutations in Korean patients with amyotrophic lateral sclerosis using multigene panel testing. Neurobiol Aging 37:209. https://doi.org/10.1016/j.neurobiolaging.2015.09.012

    Article  CAS  Google Scholar 

  • Kim EJ, Kim YE, Jang JH, Cho EH, Na DL, Seo SW, Jung NY, Jeong JH, Kwon JC, Park KH, Park KW, Lee JH, Roh JH, Kim HJ, Yoon SJ, Choi SH, Jang JW, Ki CS, Kim SH (2018) Analysis of frontotemporal dementia, amyotrophic lateral sclerosis, and other dementia-related genes in 107 Korean patients with frontotemporal dementia. Neurobiol Aging 72:186. https://doi.org/10.1016/j.neurobiolaging.2018.06.031

    Article  CAS  Google Scholar 

  • Kuuluvainen L, Kaivola K, Monkare S, Laaksovirta H, Jokela M, Udd B, Valori M, Pasanen P, Paetau A, Traynor BJ, Stone DJ, Schleutker J, Poyhonen M, Tienari PJ, Myllykangas L (2019) Oligogenic basis of sporadic ALS: the example of SOD1 p.Ala90Val mutation. Neurol Genet 5(3):e335. https://doi.org/10.1212/NXG.0000000000000335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski TJ, Bosco DA, LeClerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208. https://doi.org/10.1126/science.1166066

    Article  CAS  PubMed  Google Scholar 

  • Lamp M, Origone P, Geroldi A, Verdiani S, Gotta F, Caponnetto C, Devigili G, Verriello L, Scialo C, Cabona C, Canosa A, Vanni I, Bellone E, Eleopra R, Mandich P (2018) Twenty years of molecular analyses in amyotrophic lateral sclerosis: genetic landscape of Italian patients. Neurobiol Aging 66:179. https://doi.org/10.1016/j.neurobiolaging.2018.01.013

    Article  CAS  Google Scholar 

  • Lattante S, Doronzio PN, Conte A, Marangi G, Martello F, Bisogni G, Meleo E, Colavito D, Del Giudice E, Patanella AK, Bernardo D, Romano A, Zollino M, Sabatelli M (2021) Novel variants and cellular studies on patients’ primary fibroblasts support a role for NEK1 missense variants in ALS pathogenesis. Hum Mol Genet 30(1):65–71. https://doi.org/10.1093/hmg/ddab015

    Article  CAS  PubMed  Google Scholar 

  • Lattante S, Doronzio PN, Marangi G, Conte A, Bisogni G, Bernardo D, Russo T, Lamberti D, Patrizi S, Apollo FP, Lunetta C, Scarlino S, Pozzi L, Zollino M, Riva N, Sabatelli M (2019) Coexistence of variants in TBK1 and in other ALS-related genes elucidates an oligogenic model of pathogenesis in sporadic ALS. Neurobiol Aging 84:239. https://doi.org/10.1016/j.neurobiolaging.2019.03.010

    Article  CAS  Google Scholar 

  • Liu X, He J, Chen L, Zhang N, Tang L, Liu X, Ma Y, Fan D (2021a) TBK1 variants in Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 97:149. https://doi.org/10.1016/j.neurobiolaging.2020.07.028

    Article  CAS  Google Scholar 

  • Liu Z, Yuan Y, Wang M, Ni J, Li W, Huang L, Hu Y, Liu P, Hou X, Hou X, Du J, Weng L, Zhang R, Niu Q, Tang J, Jiang H, Shen L, Tang B, Wang J (2021b) Mutation spectrum of amyotrophic lateral sclerosis in Central South China. Neurobiol Aging 107:181–188. https://doi.org/10.1016/j.neurobiolaging.2021.06.008

    Article  CAS  PubMed  Google Scholar 

  • McCann EP, Henden L, Fifita JA, Zhang KY, Grima N, Bauer DC, Chan Moi Fat S, Twine NA, Pamphlett R, Kiernan MC, Rowe DB, Williams KL, Blair IP (2020) Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J Med Genet. https://doi.org/10.1136/jmedgenet-2020-106866

    Article  PubMed  Google Scholar 

  • McGough SF, Incerti D, Lyalina S, Copping R, Narasimhan B, Tibshirani R (2021) Penalized regression for left-truncated and right-censored survival data. Stat Med 40(25):5487–5500. https://doi.org/10.1002/sim.9136

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan S, Shatunov A, Sproviero W, Jones AR, Shoai M, Hughes D, Al Khleifat A, Malaspina A, Morrison KE, Shaw PJ, Shaw CE, Sidle K, Orrell RW, Fratta P, Hardy J, Pittman A, Al-Chalabi A (2017) A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain 140(6):1611–1618. https://doi.org/10.1093/brain/awx082

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohassel P, Donkervoort S, Lone MA, Nalls M, Gable K, Gupta SD, Foley AR, Hu Y, Saute JAM, Moreira AL, Kok F, Introna A, Logroscino G, Grunseich C, Nickolls AR, Pourshafie N, Neuhaus SB, Saade D, Gangfuss A, Kolbel H, Piccus Z, Le Pichon CE, Fiorillo C, Ly CV, Topf A, Brady L, Specht S, Zidell A, Pedro H, Mittelmann E, Thomas FP, Chao KR, Konersman CG, Cho MT, Brandt T, Straub V, Connolly AM, Schara U, Roos A, Tarnopolsky M, Hoke A, Brown RH, Lee CH, Hornemann T, Dunn TM, Bonnemann CG (2021) Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat Med 27(7):1197–1204. https://doi.org/10.1038/s41591-021-01346-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller K, Brenner D, Weydt P, Meyer T, Grehl T, Petri S, Grosskreutz J, Schuster J, Volk AE, Borck G, Kubisch C, Klopstock T, Zeller D, Jablonka S, Sendtner M, Klebe S, Knehr A, Gunther K, Weis J, Claeys KG, Schrank B, Sperfeld AD, Hubers A, Otto M, Dorst J, Meitinger T, Strom TM, Andersen PM, Ludolph AC, Weishaupt JH, German ALSnMNDNET (2018) Comprehensive analysis of the mutation spectrum in 301 German ALS families. J Neurol Neurosurg Psychiatry 89(8):817–827. https://doi.org/10.1136/jnnp-2017-317611

    Article  PubMed  Google Scholar 

  • Nahm M, Lim SM, Kim YE, Park J, Noh MY, Lee S, Roh JE, Hwang SM, Park CK, Kim YH, Lim G, Lee J, Oh KW, Ki CS, Kim SH (2020) ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci Transl Med 12(566):eaax3993. https://doi.org/10.1126/scitranslmed.aax3993

    Article  CAS  PubMed  Google Scholar 

  • Narain P, Pandey A, Gupta S, Gomes J, Bhatia R, Vivekanandan P (2018) Targeted next-generation sequencing reveals novel and rare variants in Indian patients with amyotrophic lateral sclerosis. Neurobiol Aging 71:265. https://doi.org/10.1016/j.neurobiolaging.2018.05.012

    Article  CAS  Google Scholar 

  • Narain P, Padhi AK, Dave U, Mishra D, Bhatia R, Vivekanandan P, Gomes J (2019) Identification and characterization of novel and rare susceptible variants in Indian amyotrophic lateral sclerosis patients. Neurogenetics 20(4):197–208. https://doi.org/10.1007/s10048-019-00584-3

    Article  CAS  PubMed  Google Scholar 

  • Naruse H, Ishiura H, Mitsui J, Takahashi Y, Matsukawa T, Tanaka M, Doi K, Yoshimura J, Morishita S, Goto J, Toda T, Tsuji S (2019) Burden of rare variants in causative genes for amyotrophic lateral sclerosis (ALS) accelerates age at onset of ALS. J Neurol Neurosurg Psychiatry 90(5):537–542. https://doi.org/10.1136/jnnp-2018-318568

    Article  PubMed  Google Scholar 

  • Nguyen HP, Van Broeckhoven C, van der Zee J (2018) ALS genes in the genomic era and their implications for FTD. Trends Genet 34(6):404–423. https://doi.org/10.1016/j.tig.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  • Pang SY, Hsu JS, Teo KC, Li Y, Kung MHW, Cheah KSE, Chan D, Cheung KMC, Li M, Sham PC, Ho SL (2017) Burden of rare variants in ALS genes influences survival in familial and sporadic ALS. Neurobiol Aging 58:238. https://doi.org/10.1016/j.neurobiolaging.2017.06.007

    Article  CAS  Google Scholar 

  • Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, Brown P, Ravenscroft T, van Blitterswijk M, Nicholson AM, DeTure M, Knopman DS, Josephs KA, Parisi JE, Petersen RC, Boylan KB, Boeve BF, Graff-Radford NR, Veltman JA, Gilissen C, Murray ME, Dickson DW, Rademakers R (2015) Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130(1):77–92. https://doi.org/10.1007/s00401-015-1436-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. https://doi.org/10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  • Ross JP, Leblond CS, Laurent SB, Spiegelman D, Dionne-Laporte A, Camu W, Dupre N, Dion PA, Rouleau GA (2020) Oligogenicity, C9orf72 expansion, and variant severity in ALS. Neurogenetics 21(3):227–242. https://doi.org/10.1007/s10048-020-00612-7

    Article  CAS  PubMed  Google Scholar 

  • Scarlino S, Domi T, Pozzi L, Romano A, Pipitone GB, Falzone YM, Mosca L, Penco S, Lunetta C, Sansone V, Tremolizzo L, Fazio R, Agosta F, Filippi M, Carrera P, Riva N, Quattrini A (2020) Burden of rare variants in ALS and axonal hereditary neuropathy genes influence survival in ALS: insights from a next generation sequencing study of an Italian ALS Cohort. Int J Mol Sci 21(9):3346. https://doi.org/10.3390/ijms21093346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sghaier I, Kacem I, Ticozzi N, Mrabet S, Paverelli S, Abida Y, Ratti A, Silani V, Gouider R (2022) The oligogenic model of amyotrophic lateral sclerosis; phenotypes of three Tunisian families. Clin Genet 102(6):555–556. https://doi.org/10.1111/cge.14205

    Article  CAS  PubMed  Google Scholar 

  • Shatunov A, Al-Chalabi A (2021) The genetic architecture of ALS. Neurobiol Dis 147:105156. https://doi.org/10.1016/j.nbd.2020.105156

    Article  CAS  PubMed  Google Scholar 

  • Shepheard SR, Parker MD, Cooper-Knock J, Verber NS, Tuddenham L, Heath P, Beauchamp N, Place E, Sollars ESA, Turner MR, Malaspina A, Fratta P, Hewamadduma C, Jenkins TM, McDermott CJ, Wang D, Kirby J, Shaw PJ, Project MC, Min Project E (2021) Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 92(5):510–518. https://doi.org/10.1136/jnnp-2020-325014

    Article  PubMed  Google Scholar 

  • Siddique T, Deng HX (1996) Genetics of amyotrophic lateral sclerosis. Hum Mol Genet 5:1465–1470. https://doi.org/10.1093/hmg/5.supplement_1.1465

    Article  CAS  PubMed  Google Scholar 

  • Stevanin G, Azzedine H, Denora P, Boukhris A, Tazir M, Lossos A, Rosa AL, Lerer I, Hamri A, Alegria P, Loureiro J, Tada M, Hannequin D, Anheim M, Goizet C, Gonzalez-Martinez V, Le Ber I, Forlani S, Iwabuchi K, Meiner V, Uyanik G, Erichsen AK, Feki I, Pasquier F, Belarbi S, Cruz VT, Depienne C, Truchetto J, Garrigues G, Tallaksen C, Tranchant C, Nishizawa M, Vale J, Coutinho P, Santorelli FM, Mhiri C, Brice A, Durr A, consortium S (2008) Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 131(3):772–784. https://doi.org/10.1093/brain/awm293

    Article  PubMed  Google Scholar 

  • Tang L, Ma Y, Liu XL, Chen L, Fan DS (2019) Better survival in female SOD1-mutant patients with ALS: a study of SOD1-related natural history. Transl Neurodegener 8:2. https://doi.org/10.1186/s40035-018-0142-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripolszki K, Gampawar P, Schmidt H, Nagy ZF, Nagy D, Klivenyi P, Engelhardt JI, Szell M (2019) Comprehensive genetic analysis of a Hungarian amyotrophic lateral sclerosis cohort. Front Genet 10:732. https://doi.org/10.3389/fgene.2019.00732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunca C, Seker T, Akcimen F, Coskun C, Bayraktar E, Palvadeau R, Zor S, Kocoglu C, Kartal E, Sen NE, Hamzeiy H, Ozoguz Erimis A, Norman U, Karakahya O, Olgun G, Akgun T, Durmus H, Sahin E, Cakar A, Basar Gursoy E, Babacan Yildiz G, Isak B, Uluc K, Hanagasi H, Bilgic B, Turgut N, Aysal F, Ertas M, Boz C, Kotan D, Idrisoglu H, Soysal A, Uzun Adatepe N, Akalin MA, Koc F, Tan E, Oflazer P, Deymeer F, Tastan O, Cicek AE, Kavak E, Parman Y, Basak AN (2020) Revisiting the complex architecture of ALS in Turkey: expanding genotypes, shared phenotypes, molecular networks, and a public variant database. Hum Mutat 41(8):e7–e45. https://doi.org/10.1002/humu.24055

    Article  CAS  PubMed  Google Scholar 

  • van Blitterswijk M, van Es MA, Hennekam EA, Dooijes D, van Rheenen W, Medic J, Bourque PR, Schelhaas HJ, van der Kooi AJ, de Visser M, de Bakker PI, Veldink JH, van den Berg LH (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21(17):3776–3784. https://doi.org/10.1093/hmg/dds199

    Article  CAS  PubMed  Google Scholar 

  • van der Zee J, Gijselinck I, Van Mossevelde S, Perrone F, Dillen L, Heeman B, Baumer V, Engelborghs S, De Bleecker J, Baets J, Gelpi E, Rojas-Garcia R, Clarimon J, Lleo A, Diehl-Schmid J, Alexopoulos P, Perneczky R, Synofzik M, Just J, Schols L, Graff C, Thonberg H, Borroni B, Padovani A, Jordanova A, Sarafov S, Tournev I, de Mendonca A, Miltenberger-Miltenyi G, Simoes do Couto F, Ramirez A, Jessen F, Heneka MT, Gomez-Tortosa E, Danek A, Cras P, Vandenberghe R, De Jonghe P, De Deyn PP, Sleegers K, Cruts M, Van Broeckhoven C, Goeman J, Nuytten D, Smets K, Robberecht W, Damme PV, Bleecker J, Santens P, Dermaut B, Versijpt J, Michotte A, Ivanoiu A, Deryck O, Bergmans B, Delbeck J, Bruyland M, Willems C, Salmon E, Pastor P, Ortega-Cubero S, Benussi L, Ghidoni R, Binetti G, Hernandez I, Boada M, Ruiz A, Sorbi S, Nacmias B, Bagnoli S, Sorbi S, Sanchez-Valle R, Llado A, Santana I, Rosario Almeida M, Frisoni GB, Maetzler W, Matej R, Fraidakis MJ, Kovacs GG, Fabrizi GM, Testi S (2017) TBK1 mutation spectrum in an extended european patient cohort with frontotemporal dementia and amyotrophic lateral sclerosis. Hum Mutat 38(3):297–309. https://doi.org/10.1002/humu.23161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Costa JF, Pedrola Vidal L, Moreau-Le Lan S, Teresi-Copovi I, Frasquet M, Chumillas MJ, Sevilla T (2019) Facial onset sensory and motor neuronopathy: a motor neuron disease with an oligogenic origin? Amyotroph Lateral Scler Frontotemporal Degener 20(3–4):172–175. https://doi.org/10.1080/21678421.2019.1582671

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Cheng Y, Jia X, Liu X, Li X, Zhang K, Shen D, Liu M, Guan Y, Liu Q, Cui L, Li X (2021) Four novel optineurin mutations in patients with sporadic amyotrophic lateral sclerosis in Mainland China. Neurobiol Aging 97:149. https://doi.org/10.1016/j.neurobiolaging.2020.08.002

    Article  CAS  Google Scholar 

  • Yilmaz R, Weishaupt K, Valkadinov I, Knehr A, Brenner D, Weishaupt JH (2022) Quadruple genetic variants in a sporadic ALS patient. Mol Genet Genomic Med 10(7):e1953. https://doi.org/10.1002/mgg3.1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Cai W, Chen S, Liang J, Wang Z, Ren Y, Liu W, Zhang X, Sun Z, Huang X (2018a) Screening for possible oligogenic pathogenesis in Chinese sporadic ALS patients. Amyotroph Lateral Scler Frontotemporal Degener 19(5–6):419–425. https://doi.org/10.1080/21678421.2018.1432659

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liang JL, Chen SY, Wang ZJ, Yang F, Cui F, Ren YT, Liu WX, Sun ZS, Huang XS (2018b) Screening of the SETX gene in sporadic amyotrophic lateral sclerosis patients of Chinese origin. Zhonghua Yi Xue Za Zhi 98(33):2628–2631. https://doi.org/10.3760/cma.j.issn.0376-2491.2018.33.003

    Article  CAS  PubMed  Google Scholar 

  • Zou ZY, Li XG, Liu MS, Cui LY (2013) Screening for C9orf72 repeat expansions in Chinese amyotrophic lateral sclerosis patients. Neurobiol Aging 34(6):1710. https://doi.org/10.1016/j.neurobiolaging.2012.11.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to give their gratitude to all the study participants and their families for their dedication to ALS research. The authors would like to thank HuaBiao Project: Whole-Exome Database of Han Chinese, for we use the database as control.

Funding

This work was supported by 2020 Central Transfer Payment Medical Siege Institutions Capacity Building Project (National and Provincial Multi-scientific Cooperation Diagnosis and Treatment of Major Diseases Capacity Building Project); Shanghai Fudan University Education Development Foundation and State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University; Shanghai Municipal Science and Technology Major Project 2017HZDZX01.

Author information

Authors and Affiliations

Authors

Contributions

Included conception and study design (XC and JW), data collection or acquisition (SD, XY, KW, WY, JL, YZ and XL), statistical analysis (SD, XY, KW and YW), interpretation of results (SD, XY, KW, JW and XC), drafting the manuscript work (SD, XY, JW and XC) and approval of final version to be published and agreement to be accountable for the integrity and accuracy of all aspects of the work (all the authors).

Corresponding authors

Correspondence to Jiucun Wang or Xiangjun Chen.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the author(s).

Ethical Approval and Consent to Participate

The studies involving human participants were reviewed and approved by the Ethics Committee of Huashan Hospital, Fudan University. The patients/participants provided their written informed consent to participate in this study.

Consent for Publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Yin, X., Wang, K. et al. Presence of Rare Variants is Associated with Poorer Survival in Chinese Patients with Amyotrophic Lateral Sclerosis. Phenomics 3, 167–181 (2023). https://doi.org/10.1007/s43657-022-00093-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43657-022-00093-8

Keywords

Navigation