Skip to main content

Chronic Inflammation and Pathogenesis of GI and Pancreatic Cancers

  • Chapter
The Link Between Inflammation and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 130))

Abstract

The pathogenesis of cancer represents a complex and multifactorial process requiring a number of acquired and genetic defects. It is becoming increasingly apparent that many cancers originate from a chronic inflammatory process. The topic of this review is the inflammatory response and development of gastrointestinal (GI) and pancreatic cancers. Here, we describe the development of various gastric colorectal and pancreatic cancers through an inflammatory process. The tumor microenvironment which predisposes to tissue destruction, subsequent attempts at healing and accumulation of cellular damage with loss of cell cycle control mechanisms is discussed. Components of the tumor microenvironment that are important in the final common pathway leading to cancer include the tumor stroma, tumor-associated macrophages, cytokines and chemokines and reactive oxygen and nitrogen species. Common signaling pathways that link inflammation with cancer are described and include the COX-2, NF-κB and phosphatidyl inositol 3-kinase (PI3K) pathways. Finally, therapies that can be directed to the inflammatory process as either treatment or prevention of these cancers will be discussed including novel inhibitors of signaling pathways which are currently in development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Agoff, S.N. et al. (2000). The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia. Am. J. Pathol. 157: 737–745.

    Article  PubMed  CAS  Google Scholar 

  • Arico, S. et al. (2001). The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 276: 35243–35246.

    Article  PubMed  CAS  Google Scholar 

  • Atkins, M.B. et al. (2004). Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22: 909–918.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, Jr., A.S. (1996). The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649–683.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill, F. and Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet 357: 539–545.

    Article  PubMed  CAS  Google Scholar 

  • Bing, R.J. et al. (2001). Nitric oxide, prostanoids, cyclooxygenase, and angiogenesis in colon and breast cancer. Clin. Cancer Res. 7: 3385–3392.

    PubMed  CAS  Google Scholar 

  • Bold, R.J. et al. (1997). Apoptosis, cancer and cancer therapy. Surg. Oncol. 6: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, T.B. et al. (2003). Farnesyltransferase inhibitors: an overview of the results of preclinical and clinical investigations. Cancer Res. 63: 5656–5668.

    PubMed  CAS  Google Scholar 

  • Cantley, L.C. and Neel, B.G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. U. S. A. 96: 4240–4245.

    Article  PubMed  CAS  Google Scholar 

  • Celik, E. et al. (2003). Case report: early arising Marjolin’s ulcer in the scalp. Ann. Burn Fire Dis. 16: 217–220.

    Google Scholar 

  • Correa, P et al. (2000). Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti-helicobacter pylori therapy. J. Natl Cancer Inst. 92: 1881–1888.

    Article  PubMed  CAS  Google Scholar 

  • Correa, P. (2003). Bacterial infections as a cause of cancer. J. Natl Cancer. Inst. 95: E3.

    Article  PubMed  Google Scholar 

  • Cotran, R.S. et al. (1999). Pathologic Basis of Disease (W.B. Saunders Company, Philadelphia).

    Google Scholar 

  • Coussens, L.M. and Werb, Z. (2002). Inflammation and cancer. Nature 420: 860–867.

    Article  PubMed  CAS  Google Scholar 

  • DuBois, R.N. et al. (1996). Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol. Clin. North Am. 25: 773–791.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak, H.F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315: 1650–1659.

    Article  PubMed  CAS  Google Scholar 

  • Eaden, J. A. et al. (2001). The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48: 526–535.

    Article  PubMed  CAS  Google Scholar 

  • Ethridge, R.T. et al. (2002a). Cyclooxygenase-2 gene disruption attenuates the severity of acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 123: 1311–1322.

    Article  PubMed  CAS  Google Scholar 

  • Ethridge, R.T. et al. (2002b). Selective inhibition of NF-kappaB attenuates the severity of cerulein-induced acute pancreatitis. J. Am. Coll. Surg. 195: 497–505.

    Article  PubMed  Google Scholar 

  • Farrow, B. and Evers, B.M. (2002). Inflammation and the development of pancreatic cancer. Surg. Oncol. 10: 153–169.

    Article  PubMed  Google Scholar 

  • Farrow, B. et al. (2004). Inflammatory mechanisms contributing to pancreatic cancer development. Ann. Surg. 239: 763–769.

    Article  PubMed  Google Scholar 

  • Fitzgerald, G.A. (2004). Coxibs and cardiovascular disease. N. Engl. J. Med. 351: 1709–1711.

    Article  PubMed  CAS  Google Scholar 

  • Gasche, C. et al. (2001). Oxidative stress increases frameshift mutations in human colorectal cancer cells. Cancer Res. 61: 7444–7448.

    PubMed  CAS  Google Scholar 

  • Giardiello, F.M. et al. (1993). Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 328: 1313–1316.

    Article  PubMed  CAS  Google Scholar 

  • Greten, F.R. et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296.

    Article  PubMed  CAS  Google Scholar 

  • Gustin, J. A. et al. (2004). Cell type-specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-kappa B activation. J. Biol. Chem. 279: 1615–1620.

    Article  PubMed  CAS  Google Scholar 

  • Hasuwa, H. et al. (2002). Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532: 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Hersey, P. and Zhang, X.D. (2003). Overcoming resistance of cancer cells to apoptosis. J. Cell Physiol. 196: 9–18.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, S.P. et al. (2000). Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 60: 3333–3337.

    PubMed  CAS  Google Scholar 

  • Itzkowitz, S.H. and Yio, X. (2004). Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 287: G7–G17.

    Article  PubMed  CAS  Google Scholar 

  • Jobin, C. et al. (1998). Specific NF-kappaB blockade selectively inhibits tumour necrosis factor-alpha-induced COX-2 but not constitutive COX-1 gene expression in HT-29 cells. Immunology 95: 537–543.

    Article  PubMed  CAS  Google Scholar 

  • Khaleghpour, K. et al. (2004). Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis 25: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. et al. (2002). PTEN and TNF-alpha regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-kappaB-dependent pathway. Gastroenterology 123: 1163–1178.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. et al. (2004). Down-regulation of the tumor suppressor PTEN by the tumor necrosis factor-alpha/nuclear factor-kappaB (NF-kappaB)-inducing kinase/NF-kappaB pathway is linked to a default IkappaB-alpha autoregulatory loop. J. Biol. Chem. 279: 4285–4291.

    Article  PubMed  CAS  Google Scholar 

  • Labayle, D. et al. (1991). Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101: 635–639.

    PubMed  CAS  Google Scholar 

  • Lichtenstein, G.R. (2002). Reduction of colorectal cancer risk in patients with Crohn’s disease. Rev. Gastroenterol. Disord. 2(Suppl. 2): S16–S24.

    PubMed  Google Scholar 

  • Lowenfels, A.B. et al. (1993). Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N. Engl. J. Med. 328: 1433–1437.

    Article  PubMed  CAS  Google Scholar 

  • Luo, J.L. et al. (2004). Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRΛIL-mediated tumor regression. Cancer Cell 6: 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani, A. et al. (1992). The origin and function of tumor-associated macrophages. Immunol. Today 13: 265–270.

    Article  PubMed  CAS  Google Scholar 

  • May, M.J. and Ghosh, S. (1998). Signal transduction through NF-kappa B. Immunol. Today 19: 80–88.

    Article  PubMed  CAS  Google Scholar 

  • McCawley, L.J. and Matrisian, L.M. (2001). Tumor progression: defining the soil round the tumor seed. Curr. Biol. 11: R25–R27.

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn, J. and Baselga, J. (2003). Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 21: 2787–2799.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.J. et al. (1999). Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat. Med. 5: 828–831.

    Article  PubMed  CAS  Google Scholar 

  • Murano, M. et al. (2000). Therapeutic effect of intracolonically administered nuclear factor kappa B (p65) antisense oligonucleotide on mouse dextran sulphate sodium (DSS)-induced colitis. Clin. Exp. Immunol. 120: 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, M. et al. (1996). Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87: 803–809.

    Article  PubMed  CAS  Google Scholar 

  • Ozes, O. N. et al. (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401: 82–85.

    Article  PubMed  CAS  Google Scholar 

  • Parsonnet, J. et al. (1991). Helicobacter pylori infection in intestinal-and diffuse-type gastric adenocarcinomas. J. Natl Cancer Inst. 83: 640–643.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, S.A. et al. (1999). The role of NF-kappaB/IkappaB proteins in cancer: implications for novel treatment strategies. Surg. Oncol. 8: 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Sekulic, A. et al. (2000). A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60: 3504–3513.

    PubMed  CAS  Google Scholar 

  • Semba, S. et al. (2002). The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), a specific inhibitor of phosphatidylinositol 3’-kinase, in human colon cancer cells. Clin. Cancer Res. 8: 1957–1963.

    PubMed  CAS  Google Scholar 

  • Shao, J. et al. (2000). Regulation of constitutive cyclooxygenase-2 expression in colon carcinoma cells. J. Biol. Chem. 275: 33951–33956.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, H. et al. (1997). Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J. Clin. Invest. 99: 2254–2259.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, H. et al. (2003). Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells. Gut 52: 1472–1478.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Q. et al. (1999). Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic, Clin. Cancer Res. 5: 3711–3721.

    PubMed  CAS  Google Scholar 

  • Slogoff, M.I. et al. (2004). COX-2 inhibition results in alterations in nuclear factor (NF)-kappaB activation but not cytokine production in acute pancreatitis. J. Gastrointest. Surg. 8: 511–519.

    Article  PubMed  Google Scholar 

  • Stein, R.C. and Waterfield, M.D. (2000). PI3-kinase inhibition: a target for drug development? Mol. Med. Today 6: 347–357.

    Article  PubMed  CAS  Google Scholar 

  • Stoicov, C. et al. (2004). Molecular biology of gastric cancer: Helicobacter infection and gastric adenocarcinoma: bacterial and host factors responsible for altered growth signaling. Gene 341: 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Stolte, M. and Meining, A. (1998). Helicobacter pylori and Gastric Cancer. Oncologist 3: 124–128.

    PubMed  Google Scholar 

  • Suganuma, M. et al. (1999). Essential role of tumor necrosis factor alpha (TNF-alpha) in tumor promotion as revealed by TNF-alpha-deficient mice. Cancer Res. 59: 4516–4518.

    PubMed  CAS  Google Scholar 

  • Sun, Y. et al. (2002). Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res. 62: 6323–6328.

    PubMed  CAS  Google Scholar 

  • Talapatra, S. and Thompson, C.B. (2001). Growth factor signaling in cell survival: implications for cancer treatment. J. Pharmacol. Exp. Ther. 298: 873–878.

    PubMed  CAS  Google Scholar 

  • Thun, M.J. et al. (1991). Aspirin use and reduced risk of fatal colon cancer. N. Engl. J. Med. 325: 1593–1596.

    Article  PubMed  CAS  Google Scholar 

  • Thun, M.J. et al. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl Cancer Inst. 94: 252–266.

    Article  PubMed  CAS  Google Scholar 

  • Tiscornia, G. et al. (2003). A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl Acad. Sci. U. S. A. 100: 1844–1848.

    Article  PubMed  CAS  Google Scholar 

  • Tricot, G. (2000). New insights into role of microenvironment in multiple myeloma. Lancet 355: 248–250.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, N. et al. (1997). Effect of Helicobacter pylori eradication on subsequent development of cancer after endoscopic resection of early gastric cancer. Cancer Epidemiol. Biomarkers Prev. 6: 639–642.

    PubMed  CAS  Google Scholar 

  • Uemura, N. et al. (2001). Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345: 784–789.

    Article  PubMed  CAS  Google Scholar 

  • Vidal-Vanaclocha, F. et al. (2000). IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc. Natl Acad. Sci. U. S. A. 97: 734–739.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q. et al. (2002a). Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3’-kinase inhibition in the KM20 human colon cancer cell line. Clin. Cancer Res. 8: 1940–1947.

    PubMed  CAS  Google Scholar 

  • Wang, Q. et al. (2002b). Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. J. Biol. Chem. 277: 36602–36610.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W. et al. (1999). The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin. Cancer Res. 5: 119–127.

    PubMed  CAS  Google Scholar 

  • Weaver, S.A. and Ward, S.G. (2001). Phosphoinositide 3-kinases in the gut: a link between inflammation and cancer? Trends Mol. Med. 7: 455–462.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, Y. and Gaynor, R.B. (2001). Therapeutic potential of inhibition of the NFkappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107: 135–142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Jackson, L., Evers, B.M. (2006). Chronic Inflammation and Pathogenesis of GI and Pancreatic Cancers. In: Dalgleish, A.G., Haefner, B. (eds) The Link Between Inflammation and Cancer. Cancer Treatment and Research, vol 130. Springer, Boston, MA. https://doi.org/10.1007/0-387-26283-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-26283-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-26282-6

  • Online ISBN: 978-0-387-26283-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics